初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)一定要記住

字號(hào):

大家都知道,初中數(shù)學(xué)學(xué)習(xí)是對(duì)學(xué)生邏輯計(jì)算能力的培養(yǎng),想要學(xué)好初中數(shù)學(xué),就要多總結(jié)所學(xué)知識(shí),多掌握解題思路,通過習(xí)題的練習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)產(chǎn)生興趣。終實(shí)現(xiàn)初中數(shù)學(xué)的融會(huì)貫通,學(xué)好這門課程。以下內(nèi)容是為大家準(zhǔn)備的相關(guān)內(nèi)容。
    代數(shù)部分:有理數(shù)、無(wú)理數(shù)、實(shí)數(shù)整式、分式、二次根式一元方程、一元二次方程、二(三)元方程組、二元二次方程組、分式方程、一元不等式函數(shù)(函數(shù)、二次函數(shù)、反比例函數(shù))
    幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
    1、實(shí)數(shù)的分類
    有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無(wú)限環(huán)循小數(shù))都是有理數(shù)。如:-3,,0.231,0.737373...
    無(wú)理數(shù):無(wú)限不環(huán)循小數(shù)叫做無(wú)理數(shù)如:π,-,0.1010010001...(兩個(gè)1之間依次多1個(gè)0)。
    實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。
    2、無(wú)理數(shù)
    在理解無(wú)理數(shù)時(shí),要抓住"無(wú)限不循環(huán)"這一時(shí)之,它包含兩層意思:一是無(wú)限小數(shù);二是不循環(huán).二者缺一不可.歸納起來有四類:
    (1)開方開不盡的數(shù),如等;
    (2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;
    (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001...等;
    (4)某些三角函數(shù),如sin60o等。
    注意:判斷一個(gè)實(shí)數(shù)的屬性(如有理數(shù)、無(wú)理數(shù)),應(yīng)遵循:一化簡(jiǎn),二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn).
    3、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
    常見的非負(fù)數(shù)有:
    性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
    4、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
    解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。
    ①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸("三要素")。
    ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
    ③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。
    作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
    5、相反數(shù)
    實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
    即:(1)實(shí)數(shù)的相反數(shù)是。