數(shù)學可以訓練你的思維能力,思維方式。當然最重要的是與自己能在社會上生活有關,你想找到好的工作,基本都是和數(shù)學都是有關系的。因此從小的學習十分有必要。以下是整理的相關資料,希望對您有所幫助。
一、什么是簡便運算
“簡便運算”是一種特殊的計算,它運用了運算定律與數(shù)字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算。
二、簡便運算大全
(一)、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括號時,我們可以“帶符號搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
說明:適用于加法交換律和乘法交換律。
(二)、結合律
(1)加括號法
①當一個計算題只有加減運算又沒有括號時,我們可以在加號后面直接添括號,括到括號里的運算原來是加還是加,是減還是減。但是在減號后面添括號時,括到括號里的運算,原來是加,現(xiàn)在就要變?yōu)闇p;原來是減,現(xiàn)在就要變?yōu)榧?。(即在加減運算中添括號時,括號前是加號,括號里不變號,括號前是減號,括號里要變號。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②當一個計算題只有乘除運算又沒有括號時,我們可以在乘號后面直接添括號,括到括號里的運算,原來是乘還是乘,是除還是除。但是在除號后面添括號時,括到括號里的運算,原來是乘,現(xiàn)在就要變?yōu)槌?;原來是除,現(xiàn)在就要變?yōu)槌?。(即在乘除運算中添括號時,括號前是乘號,括號里不變號,括號前是除號,括號里要變號。)
例:510÷17÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括號法
①當一個計算題只有加減運算又有括號時,我們可以將加號后面的括號直接去掉,原來是加現(xiàn)在還是加,是減還是減。但是將減號后面的括號去掉時,原來括號里的加,現(xiàn)在要變?yōu)闇p;原來是減,現(xiàn)在就要變?yōu)榧?。(現(xiàn)在沒有括號了,可以帶符號搬家了哈)(注:去括號是添加括號的逆運算)
②當一個計算題只有乘除運算又有括號時,我們可以將乘號后面的括號直接去掉,原來是乘還是乘,是除還是除。但是將除號后面的括號去掉時,原來括號里的乘,現(xiàn)在就要變?yōu)槌?;原來是除,現(xiàn)在就要變?yōu)槌恕#ìF(xiàn)在沒有括號了,可以帶符號搬家了哈)(注:去掉括號是添加括號的逆運算)
三、乘法分配律
①分配法括號里是加或減運算,與另一個數(shù)相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式注意相同因數(shù)的提取。
例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數(shù)。
③注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發(fā)現(xiàn)規(guī)律。還要注意還哦,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數(shù)拆成幾個數(shù)。這需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數(shù)的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
綜上所述,在四則混合運算中,簡便運算試題的類型不外乎這幾種形式,只要掌握四則混合運算順序,同時掌握好上述簡便算法,就可以保證計算的時效。
一、什么是簡便運算
“簡便運算”是一種特殊的計算,它運用了運算定律與數(shù)字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算。
二、簡便運算大全
(一)、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括號時,我們可以“帶符號搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
說明:適用于加法交換律和乘法交換律。
(二)、結合律
(1)加括號法
①當一個計算題只有加減運算又沒有括號時,我們可以在加號后面直接添括號,括到括號里的運算原來是加還是加,是減還是減。但是在減號后面添括號時,括到括號里的運算,原來是加,現(xiàn)在就要變?yōu)闇p;原來是減,現(xiàn)在就要變?yōu)榧?。(即在加減運算中添括號時,括號前是加號,括號里不變號,括號前是減號,括號里要變號。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②當一個計算題只有乘除運算又沒有括號時,我們可以在乘號后面直接添括號,括到括號里的運算,原來是乘還是乘,是除還是除。但是在除號后面添括號時,括到括號里的運算,原來是乘,現(xiàn)在就要變?yōu)槌?;原來是除,現(xiàn)在就要變?yōu)槌?。(即在乘除運算中添括號時,括號前是乘號,括號里不變號,括號前是除號,括號里要變號。)
例:510÷17÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括號法
①當一個計算題只有加減運算又有括號時,我們可以將加號后面的括號直接去掉,原來是加現(xiàn)在還是加,是減還是減。但是將減號后面的括號去掉時,原來括號里的加,現(xiàn)在要變?yōu)闇p;原來是減,現(xiàn)在就要變?yōu)榧?。(現(xiàn)在沒有括號了,可以帶符號搬家了哈)(注:去括號是添加括號的逆運算)
②當一個計算題只有乘除運算又有括號時,我們可以將乘號后面的括號直接去掉,原來是乘還是乘,是除還是除。但是將除號后面的括號去掉時,原來括號里的乘,現(xiàn)在就要變?yōu)槌?;原來是除,現(xiàn)在就要變?yōu)槌恕#ìF(xiàn)在沒有括號了,可以帶符號搬家了哈)(注:去掉括號是添加括號的逆運算)
三、乘法分配律
①分配法括號里是加或減運算,與另一個數(shù)相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式注意相同因數(shù)的提取。
例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數(shù)。
③注意構造,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發(fā)現(xiàn)規(guī)律。還要注意還哦,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顧名思義,拆分法就是為了方便計算把一個數(shù)拆成幾個數(shù)。這需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數(shù)的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
綜上所述,在四則混合運算中,簡便運算試題的類型不外乎這幾種形式,只要掌握四則混合運算順序,同時掌握好上述簡便算法,就可以保證計算的時效。