人教版高一年級(jí)數(shù)學(xué)題及答案

字號(hào):

仰望天空時(shí),什么都比你高,你會(huì)自卑;俯視大地時(shí),什么都比你低,你會(huì)自負(fù);只有放寬視野,把天空和大地盡收眼底,才能在蒼穹沃土之間找到你真正的位置。無需自卑,不要自負(fù),堅(jiān)持自信。高一頻道為你整理了《人教版高一年級(jí)數(shù)學(xué)題及答案》希望你對(duì)你的學(xué)習(xí)有所幫助!
    【一】
    第Ⅰ卷(選擇題共60分)
    一、選擇題(本大題共12個(gè)小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符號(hào)題目要求的。)
    1.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},則(A∩B)∪C等于()
    A.{0,1,2,6,8}B.{3,7,8}
    C.{1,3,7,8}D.{1,3,6,7,8}
    [答案]C
    [解析]A∩B={1,3},(A∩B)∪C={1,3,7,8},故選C.
    2.(09•陜西文)定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)x2-x1<0,則()
    A.f(3)    C.f(-2)    [答案]A
    [解析]若x2-x1>0,則f(x2)-f(x1)<0,
    即f(x2)    ∴f(x)在[0,+∞)上是減函數(shù),
    ∵3>2>1,∴f(3)    又f(x)是偶函數(shù),∴f(-2)=f(2),
    ∴f(3)    3.已知f(x),g(x)對(duì)應(yīng)值如表.
    x01-1
    f(x)10-1
    x01-1
    g(x)-101
    則f(g(1))的值為()
    A.-1B.0
    C.1D.不存在
    [答案]C
    [解析]∵g(1)=0,f(0)=1,∴f(g(1))=1.
    4.已知函數(shù)f(x+1)=3x+2,則f(x)的解析式是()
    A.3x+2B.3x+1
    C.3x-1D.3x+4
    [答案]C
    [解析]設(shè)x+1=t,則x=t-1,
    ∴f(t)=3(t-1)+2=3t-1,∴f(x)=3x-1.
    5.已知f(x)=2x-1(x≥2)-x2+3x(x<2),則f(-1)+f(4)的值為()
    A.-7B.3
    C.-8D.4
    [答案]B
    [解析]f(4)=2×4-1=7,f(-1)=-(-1)2+3×(-1)=-4,∴f(4)+f(-1)=3,故選B.
    6.f(x)=-x2+mx在(-∞,1]上是增函數(shù),則m的取值范圍是()
    A.{2}B.(-∞,2]
    C.[2,+∞)D.(-∞,1]
    [答案]C
    [解析]f(x)=-(x-m2)2+m24的增區(qū)間為(-∞,m2],由條件知m2≥1,∴m≥2,故選C.
    7.定義集合A、B的運(yùn)算A*B={x|x∈A,或x∈B,且x∉A∩B},則(A*B)*A等于()
    A.A∩BB.A∪B
    C.AD.B
    [答案]D
    [解析]A*B的本質(zhì)就是集合A與B的并集中除去它們的公共元素后,剩余元素組成的集合.
    因此(A*B)*A是圖中陰影部分與A的并集,除去A中陰影部分后剩余部分即B,故選D.
    [點(diǎn)評(píng)]可取特殊集合求解.
    如取A={1,2,3},B={1,5},則A*B={2,3,5},(A*B)*A={1,5}=B.
    8.(廣東梅縣東山中學(xué)2009~2010高一期末)定義兩種運(yùn)算:ab=a2-b2,a⊗b=(a-b)2,則函數(shù)f(x)=為()
    A.奇函數(shù)
    B.偶函數(shù)
    C.奇函數(shù)且為偶函數(shù)
    D.非奇函數(shù)且非偶函數(shù)
    [答案]A
    [解析]由運(yùn)算與⊗的定義知,
    f(x)=4-x2(x-2)2-2,
    ∵4-x2≥0,∴-2≤x≤2,
    ∴f(x)=4-x2(2-x)-2=-4-x2x,
    ∴f(x)的定義域?yàn)閧x|-2≤x<0或0    又f(-x)=-f(x),∴f(x)為奇函數(shù).
    9.(08•天津文)已知函數(shù)f(x)=x+2,x≤0,-x+2,x>0,則不等式f(x)≥x2的解集為()
    A.[-1,1]B.[-2,2]
    C.[-2,1]D.[-1,2]
    [答案]A
    [解析]解法1:當(dāng)x=2時(shí),f(x)=0,f(x)≥x2不成立,排除B、D;當(dāng)x=-2時(shí),f(x)=0,也不滿足f(x)≥x2,排除C,故選A.
    解法2:不等式化為x≤0x+2≥x2或x>0-x+2≥x2,
    解之得,-1≤x≤0或0    10.調(diào)查了某校高一一班的50名學(xué)生參加課外活動(dòng)小組的情況,有32人參加了數(shù)學(xué)興趣小組,有27人參加了英語興趣小組,對(duì)于既參加數(shù)學(xué)興趣小組,又參加英語興趣小組的人數(shù)統(tǒng)計(jì)中,下列說法正確的是()
    A.多32人B.多13人
    C.少27人D.少9人
    [答案]D
    [解析]∵27+32-50=9,故兩項(xiàng)興趣小組都參加的至多有27人,至少有9人.
    11.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=12,f(x+2)=f(x)+f(2),則f(5)=()
    A.0B.1
    C.52D.5
    [答案]C
    [解析]f(1)=f(-1+2)=f(-1)+f(2)=12,又f(-1)=-f(1)=-12,∴f(2)=1,
    ∴f(5)=f(3)+f(2)=f(1)+2f(2)=52.
    12.已知f(x)=3-2|x|,g(x)=x2-2x,F(xiàn)(x)=g(x),若f(x)≥g(x),f(x),若f(x)    A.大值為3,小值-1
    B.大值為7-27,無小值
    C.大值為3,無小值
    D.既無大值,又無小值
    [答案]B
    [解析]作出F(x)的圖象,如圖實(shí)線部分,知有大值而無小值,且大值不是3,故選B.
    第Ⅱ卷(非選擇題共90分)
    二、填空題(本大題共4個(gè)小題,每小題4分,共16分,把正確答案填在題中橫線上)
    13.(2010•江蘇,1)設(shè)集合A={-1,1,3},B={a+2,a2+4},A∩B={3},則實(shí)數(shù)a=________.
    [答案]-1
    [解析]∵A∩B={3},∴3∈B,
    ∵a2+4≥4,∴a+2=3,∴a=-1.
    14.已知函數(shù)y=f(n)滿足f(n)=2(n=1)3f(n-1)(n≥2),則f(3)=________.
    [答案]18
    [解析]由條件知,f(1)=2,f(2)=3f(1)=6,f(3)=3f(2)=18.
    15.已知函數(shù)f(x)=2-ax(a≠0)在區(qū)間[0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是________.
    [答案](0,2]
    [解析]a<0時(shí),f(x)在定義域上是增函數(shù),不合題意,∴a>0.
    由2-ax≥0得,x≤2a,
    ∴f(x)在(-∞,2a]上是減函數(shù),
    由條件2a≥1,∴0
    16.國家規(guī)定個(gè)人稿費(fèi)的納稅辦法是:不超過800元的不納稅;超過800元而不超過4000元的按超過800元的14%納稅;超過4000元的按全部稿酬的11%納稅.某人出版了一本書,共納稅420元,則這個(gè)人的稿費(fèi)為________.
    [答案]3800元
    [解析]由于4000×11%=440>420,設(shè)稿費(fèi)x元,x<4000,則(x-800)×14%=420,
    ∴x=3800(元).
    三、解答題(本大題共6個(gè)小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
    17.(本題滿分12分)設(shè)集合A={x|a≤x≤a+3},集合B={x|x<-1或x>5},分別就下列條件求實(shí)數(shù)a的取值范圍:
    (1)A∩B≠∅,(2)A∩B=A.
    [解析](1)因?yàn)锳∩B≠∅,所以a<-1或a+3>5,即a<-1或a>2.
    (2)因?yàn)锳∩B=A,所以A⊆B,所以a>5或a+3<-1,即a>5或a<-4.
    18.(本題滿分12分)二次函數(shù)f(x)的小值為1,且f(0)=f(2)=3.
    (1)求f(x)的解析式;
    (2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍.
    [解析](1)∵f(x)為二次函數(shù)且f(0)=f(2),
    ∴對(duì)稱軸為x=1.
    又∵f(x)小值為1,∴可設(shè)f(x)=a(x-1)2+1(a>0)
    ∵f(0)=3,∴a=2,∴f(x)=2(x-1)2+1,
    即f(x)=2x2-4x+3.
    (2)由條件知2a<1
    19.(本題滿分12分)圖中給出了奇函數(shù)f(x)的局部圖象,已知f(x)的定義域?yàn)閇-5,5],試補(bǔ)全其圖象,并比較f(1)與f(3)的大?。?BR>    [解析]奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,可畫出其圖象如圖.顯見f(3)>f(1).
    20.(本題滿分12分)一塊形狀為直角三角形的鐵皮,直角邊長分別為40cm與60cm現(xiàn)將它剪成一個(gè)矩形,并以此三角形的直角為矩形的一個(gè)角,問怎樣剪法,才能使剩下的殘料少?
    [解析]如圖,剪出的矩形為CDEF,設(shè)CD=x,CF=y(tǒng),則AF=40-y.
    ∵△AFE∽△ACB.
    ∴AFAC=FEBC即∴40-y40=x60
    ∴y=40-23x.剩下的殘料面積為:
    S=12×60×40-x•y=23x2-40x+1200=23(x-30)2+600
    ∵0    ∴在邊長60cm的直角邊CB上截CD=30cm,在邊長為40cm的直角邊AC上截CF=20cm時(shí),能使所剩殘料少.
    21.(本題滿分12分)
    (1)若a<0,討論函數(shù)f(x)=x+ax,在其定義域上的單調(diào)性;
    (2)若a>0,判斷并證明f(x)=x+ax在(0,a]上的單調(diào)性.
    [解析](1)∵a<0,∴y=ax在(-∞,0)和(0,+∞)上都是增函數(shù),
    又y=x為增函數(shù),∴f(x)=x+ax在(-∞,0)和(0,+∞)上都是增函數(shù).
    (2)f(x)=x+ax在(0,a]上單調(diào)減,
    設(shè)0    =(x1+ax1)-(x2+ax2)=(x1-x2)+a(x2-x1)x1x2
    =(x1-x2)(1-ax1x2)>0,
    ∴f(x1)>f(x2),∴f(x)在(0,a]上單調(diào)減.
    22.(本題滿分14分)設(shè)函數(shù)f(x)=|x-a|,g(x)=ax.
    (1)當(dāng)a=2時(shí),解關(guān)于x的不等式f(x)    (2)記F(x)=f(x)-g(x),求函數(shù)F(x)在(0,a]上的小值(a>0).
    [解析](1)|x-2|<2x,則
    x≥2,x-2<2x.或x<2,2-x<2x.
    ∴x≥2或2323.
    (2)F(x)=|x-a|-ax,∵0    ∴F(x)=-(a+1)x+a.∵-(a+1)<0,
    ∴函數(shù)F(x)在(0,a]上是單調(diào)減函數(shù),∴當(dāng)x=a時(shí),函數(shù)F(x)取得小值為-a2.
    【二】
    第Ⅰ卷(選擇題共60分)
    一、選擇題(本大題共12個(gè)小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符號(hào)題目要求的。)
    1.(09•寧夏海南理)已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩∁NB=()
    A.{1,5,7}B.{3,5,7}
    C.{1,3,9}D.{1,2,3}
    [答案]A
    [解析]A∩∁NB={1,3,5,7,9}∩{1,2,4,5,7,8,10,11,13,14,…}={1,5,7}.
    2.方程log3x+x=3的解所在區(qū)間是()
    A.(0,1)B.(1,2)
    C.(2,3)D.(3,+∞)
    [答案]C
    [解析]令f(x)=log3x+x-3,
    ∵f(2)•f(3)<0,∴f(x)的零點(diǎn)在(2,3)內(nèi),∴選C.
    3.(08•全國Ⅰ)(1)函數(shù)y=x(x-1)+x的定義域?yàn)?)
    A.{x|x≥0}B.{x|x≥1}
    C.{x|x≥1}∪{0}D.{x|0≤x≤1}
    [答案]C
    [解析]要使y=x(x-1)+x有意義,則x(x-1)≥0x≥0,
    ∴x≥1或x≤0x≥0,∴x≥1或x=0,
    ∴定義域?yàn)閧x|x≥1}∪{0}.
    4.(09•遼寧文)已知函數(shù)f(x)滿足:x≥4,f(x)=12x;當(dāng)x<4時(shí),f(x)=f(x+1),則f(2+log23)=()
    A.124B.112
    C.18D.38
    [答案]A
    5.(08•江西)若0    A.3y<3xB.logx3    C.log4x    [答案]C
    [解析]∵0    ∴①由y=3u為增函數(shù)知3x<3y,排除A;
    ②∵log3u在(0,1)內(nèi)單調(diào)遞增,
    ∴l(xiāng)og3xlogy3,∴B錯(cuò).
    ③由y=log4u為增函數(shù)知log4x    ④由y=14u為減函數(shù)知14x>14y,排除D.
    6.已知方程|x|-ax-1=0僅有一個(gè)負(fù)根,則a的取值范圍是()
    A.a(chǎn)<1B.a(chǎn)≤1
    C.a(chǎn)>1D.a(chǎn)≥1
    [答案]D
    [解析]數(shù)形結(jié)合判斷.
    7.已知a>0且a≠1,則兩函數(shù)f(x)=ax和g(x)=loga-1x的圖象只可能是()
    [答案]C
    [解析]g(x)=loga-1x=-loga(-x),
    其圖象只能在y軸左側(cè),排除A、B;
    由C、D知,g(x)為增函數(shù),∴a>1,
    ∴y=ax為增函數(shù),排除D.∴選C.
    8.下列各函數(shù)中,哪一個(gè)與y=x為同一函數(shù)()
    A.y=x2xB.y=(x)2
    C.y=log33xD.y=2log2x
    [答案]C
    [解析]A∶y=x(x≠0),定義域不同;
    B∶y=x(x≥0),定義域不同;
    D∶y=x(x>0)定義域不同,故選C.
    9.(上海大學(xué)附中2009~2010高一期末)下圖為兩冪函數(shù)y=xα和y=xβ的圖像,其中α,β∈{-12,12,2,3},則不可能的是()
    [答案]B
    [解析]圖A是y=x2與y=x12;圖C是y=x3與y=x-12;圖D是y=x2與y=x-12,故選B.
    10.(2010•天津理,8)設(shè)函數(shù)f(x)=log2x,x>0,log12(-x),x<0.若f(a)>f(-a),則實(shí)數(shù)a的取值范圍是()
    A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)
    C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)
    [答案]C
    [解析]解法1:由圖象變換知函數(shù)f(x)圖象如圖,且f(-x)=-f(x),即f(x)為奇函數(shù),∴f(a)>f(-a)化為f(a)>0,∴當(dāng)x∈(-1,0)∪(1,+∞),f(a)>f(-a),故選C.
    解法2:當(dāng)a>0時(shí),由f(a)>f(-a)得,log2a>log12a,∴a>1;當(dāng)a<0時(shí),由f(a)>f(-a)得,log12(-a)>log2(-a),∴-1
    11.某市2008年新建住房100萬平方米,其中有25萬平方米經(jīng)濟(jì)適用房,有關(guān)部門計(jì)劃以后每年新建住房面積比上一年增加5%,其中經(jīng)濟(jì)適用房每年增加10萬平方米.按照此計(jì)劃,當(dāng)年建造的經(jīng)濟(jì)適用房面積首次超過該年新建住房面積一半的年份是(參考數(shù)據(jù):1.052=1,1.053=1.16,1.054=1.22,1.055=1.28)()
    A.2010年B.2011年
    C.2012年D.2013年
    [答案]C
    [解析]設(shè)第x年新建住房面積為f(x)=100(1+5%)x,經(jīng)濟(jì)適用房面積為g(x)=25+10x,由2g(x)>f(x)得:2(25+10x)>100(1+5%)x,將已知條件代入驗(yàn)證知x=4,所以在2012年時(shí)滿足題意.
    12.(2010•山東理,4)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(-1)=()
    A.3B.1
    C.-1D.-3
    [答案]D
    [解析]∵f(x)是奇函數(shù),∴f(0)=0,即0=20+b,∴b=-1,
    故f(1)=2+2-1=3,∴f(-1)=-f(1)=-3.
    第Ⅱ卷(非選擇題共90分)
    二、填空題(本大題共4個(gè)小題,每小題4分,共16分,把正確答案填在題中橫線上)
    13.化簡:(lg2)2+lg2lg5+lg5=________.
    [答案]1
    [解析](lg2)2+lg2lg5+lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1.
    14.(09•重慶理)若f(x)=12x-1+a是奇函數(shù),則a=________.
    [答案]12
    [解析]∵f(x)為奇函數(shù),∴f(-1)=-f(1),
    即12-1-1+a=-12-1-a,∴a=12.
    15.已知集合A={x|x2-9x+14=0},B={x|ax+2=0}若BA,則實(shí)數(shù)a的取值集合為________.
    [答案]{0,-1,-27}
    [解析]A={2,7},當(dāng)a=0時(shí),B=∅
    滿足BA;當(dāng)a≠0時(shí),B={-2a}
    由BA知,-2a=2或7,∴a=-1或-27
    綜上可知a的取值集合為{0,-1,-27}.
    16.已知x23>x35,則x的范圍為________.
    [答案](-∞,0)∪(1,+∞)
    [解析]解法1:y=x23和y=x35定義域都是R,y=x23過一、二象限,y=x35過一、三象限,
    ∴當(dāng)x∈(-∞,0)時(shí)x23>x35恒成立
    x=0時(shí),顯然不成立.
    當(dāng)x∈(0,+∞)時(shí),x23>0,x35>0,
    ∴=x115>1,∴x>1,即x>1時(shí)x23>x35
    ∴x的取值范圍為(-∞,0)∪(1,+∞).
    解法2:x<0時(shí),x23>0>x35成立;
    x>0時(shí),將x看作指數(shù)函數(shù)的底數(shù)
    ∵23>35且x23>x35,∴x>1.
    ∴x的取值范圍是(-∞,0)∪(1,+∞).
    [點(diǎn)評(píng)]變量與常量相互轉(zhuǎn)化思想的應(yīng)用.
    三、解答題(本大題共6個(gè)小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
    17.(本題滿分12分)用單調(diào)性定義證明函數(shù)f(x)=x-2x+1在(-1,+∞)上是增函數(shù).
    [解析]證明:設(shè)x1>x2>-1,則
    f(x1)-f(x2)=x1-2x1+1-x2-2x2+1=3(x1-x2)(x1+1)(x2+1)>0
    ∴f(x1)>f(x2)
    ∴f(x)在(-1,+∞)上是增函數(shù).
    18.(本題滿分12分)已知全集R,集合A={x|x2+px+12=0},B={x|x2-5x+q=0},若(∁RA)∩B={2},求p+q的值.
    [解析]∵(∁RA)∩B={2},∴2∈B,
    由B={x|x2-5x+q=0}有4-10+q=0,∴q=6,
    此時(shí)B={x|x2-5x+6}={2,3}
    假設(shè)∁RA中有3,則(∁RA)∩B={2,3}與(∁RA)∩B={2}矛盾,
    ∵3∈R又3∉(∁RA),
    ∴3∈A,由A={x|x2+px+12=0}有9+3p+12=0,
    ∴p=-7.∴p+q=-1.
    19.(本題滿分12分)設(shè)f(x)=4x4x+2,若0<a<1,試求:
    (1)f(a)+f(1-a)的值;
    (2)f(11001)+f(21001)+f(31001)+…+f(10001001)的值.
    [解析](1)f(a)+f(1-a)=4a4a+2+41-a41-a+2
    =4a4a+2+44+2×4a=4a+24a+2=1
    ∴f(11001)+f(10001001)=f(21001)+f(9991001)
    =…=f(5001001)+f(5011001)=1.∴原式=500.
    20.(本題滿分12分)若關(guān)于x的方程x2+2ax+2-a=0有兩個(gè)不相等的實(shí)根,求分別滿足下列條件的a的取值范圍.
    (1)方程兩根都小于1;
    (2)方程一根大于2,另一根小于2.
    [解析]設(shè)f(x)=x2+2ax+2-a
    (1)∵兩根都小于1,
    ∴Δ=4a2-4(2-a)>0-2a<2f(1)=3+a>0,解得a>1.
    (2)∵方程一根大于2,一根小于2,
    ∴f(2)<0∴a<-2.
    21.(本題滿分12分)已知函數(shù)f(x)=loga(a-ax)(a>1).
    (1)求函數(shù)的定義域和值域;
    (2)討論f(x)在其定義域內(nèi)的單調(diào)性;
    (3)求證函數(shù)的圖象關(guān)于直線y=x對(duì)稱.
    [解析](1)解:由a-ax>0得,ax<a,∵a>1,
    ∴x<1,∴函數(shù)的定義域?yàn)?-∞,1)
    ∵ax>0且a-ax>0.
    ∴0<a-ax<a.
    ∴l(xiāng)oga(a-ax)∈(-∞,1),即函數(shù)的值域?yàn)?-∞,1).
    (2)解:u=a-ax在(-∞,1)上遞減,
    ∴y=loga(a-ax)在(-∞,1)上遞減.
    (3)證明:令f(x)=y(tǒng),則y=loga(a-ax),
    ∴ay=a-ax,
    ∴ax=a-ay,∴x=loga(a-ay),
    即反函數(shù)為y=loga(a-ax),
    ∴f(x)=loga(a-ax)的圖象關(guān)于直線y=x對(duì)稱.
    [點(diǎn)評(píng)](1)本題給出了條件a>1,若把這個(gè)條件改為a>0且a≠1,就應(yīng)分a>1與0<a<1進(jìn)行討論.請(qǐng)自己在0<a<1的條件下再解答(1)(2)問.
    (2)第(3)問可在函數(shù)f(x)的圖象上任取一點(diǎn),P(x0,y0),證明它關(guān)于直線y=x的對(duì)稱點(diǎn)(y0,x0)也在函數(shù)的圖象上.
    ∵y0=loga(a-ax0)
    ∴ay0=a-ax0即a-ay0=ax0
    ∴f(y0)=loga(a-ay0)=logaax0=x0
    ∴點(diǎn)(y0,x0)也在函數(shù)y=f(x)的圖象上.
    ∴函數(shù)y=f(x)的圖象關(guān)于直線y=x對(duì)稱.
    22.(本題滿分14分)已知函數(shù)f(x)=axx2-1的定義域?yàn)閇-12,12],(a≠0)
    (1)判斷f(x)的奇偶性.
    (2)討論f(x)的單調(diào)性.
    (3)求f(x)的大值.
    [解析](1)∵f(-x)=-axx2-1=-f(x),∴f(x)為奇函數(shù).
    (2)設(shè)-12≤x1<x2≤12,
    f(x1)-f(x2)=ax1x21-1-ax2x22-1
    =a(x2-x1)(x1x2+1)(x21-1)(x22-1)
    若a>0,則由于x21-1<0,x22-1<0,x2-x1>0,
    x1x2+1>0.
    ∴f(x1)-f(x2)>0
    ∴f(x1)>f(x2)即f(x)在[-12,12]上是減函數(shù)
    若a<0,同理可得,f(x)在[-12,12]上是增函數(shù).
    (3)當(dāng)a>0時(shí),由(2)知f(x)的大值為
    f(-12)=23a.
    當(dāng)a<0時(shí),由(2)知f(x)的大值為f(12)=-23a.