奧林匹克數(shù)學(xué)競(jìng)賽或數(shù)學(xué)奧林匹克競(jìng)賽,簡(jiǎn)稱奧數(shù)。奧數(shù)體現(xiàn)了數(shù)學(xué)與奧林匹克體育運(yùn)動(dòng)精神的共通性:更快、更高、更強(qiáng)。國(guó)際數(shù)學(xué)奧林匹克作為一項(xiàng)國(guó)際性賽事,由國(guó)際數(shù)學(xué)教育專家命題,出題范圍超出了所有國(guó)家的義務(wù)教育水平,難度大大超過(guò)大學(xué)入學(xué)考試。奧數(shù)對(duì)青少年的腦力鍛煉有著一定的作用,可以通過(guò)奧數(shù)對(duì)思維和邏輯進(jìn)行鍛煉,對(duì)學(xué)生起到的并不僅僅是數(shù)學(xué)方面的作用,通常比普通數(shù)學(xué)要深?yuàn)W一些。下面是為大家?guī)?lái)的初三年級(jí)奧數(shù)知識(shí)點(diǎn):直線與圓的位置關(guān)系,歡迎大家閱讀。
①直線和圓無(wú)公共點(diǎn),稱相離。 AB與圓O相離,d>r。
②直線和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離。
①直線和圓無(wú)公共點(diǎn),稱相離。 AB與圓O相離,d>r。
②直線和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離。