奧林匹克數(shù)學(xué)競賽或數(shù)學(xué)奧林匹克競賽,簡稱奧數(shù)。奧數(shù)體現(xiàn)了數(shù)學(xué)與奧林匹克體育運(yùn)動精神的共通性:更快、更高、更強(qiáng)。國際數(shù)學(xué)奧林匹克作為一項國際性賽事,由國際數(shù)學(xué)教育專家命題,出題范圍超出了所有國家的義務(wù)教育水平,難度大大超過大學(xué)入學(xué)考試。奧數(shù)對青少年的腦力鍛煉有著一定的作用,可以通過奧數(shù)對思維和邏輯進(jìn)行鍛煉,對學(xué)生起到的并不僅僅是數(shù)學(xué)方面的作用,通常比普通數(shù)學(xué)要深奧一些。奧數(shù)對青少年的腦力鍛煉有著一定的作用,可以通過奧數(shù)對思維和邏輯進(jìn)行鍛煉,對學(xué)生起到的并不僅僅是數(shù)學(xué)方面的作用,通常比普通數(shù)學(xué)要深奧一些。下面是為大家?guī)淼某跞昙墛W數(shù)知識點:垂徑定理,歡迎大家閱讀。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。
推論1:
(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。
推論2:
圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直于弦
直徑 平分弦 知二推三
平分弦所對的優(yōu)弧
平分弦所對的劣弧
課后練習(xí)
若過圓o內(nèi)一點p的長的弦為10,短的弦長為8,求op的長。
解析:
長弦為直徑設(shè)為AB=10
短弦為垂直該直徑的弦設(shè)為CD=8
根據(jù)垂徑定理,垂直于弦的直徑平分弦
則CP=4,OC=半徑=5
根據(jù)勾股定理OP=√(OC2-CP2)=3
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。
推論1:
(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。
推論2:
圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直于弦
直徑 平分弦 知二推三
平分弦所對的優(yōu)弧
平分弦所對的劣弧
課后練習(xí)
若過圓o內(nèi)一點p的長的弦為10,短的弦長為8,求op的長。
解析:
長弦為直徑設(shè)為AB=10
短弦為垂直該直徑的弦設(shè)為CD=8
根據(jù)垂徑定理,垂直于弦的直徑平分弦
則CP=4,OC=半徑=5
根據(jù)勾股定理OP=√(OC2-CP2)=3