高三數(shù)學(xué)必修五《應(yīng)用舉例》教案

字號:

你正以凌厲的步伐邁進這段特別的歲月中。這是一段青澀而又平淡的日子,每個人都隱身于高考,而平淡之中的張力卻只有真正的勇士才可以破譯。以下是高中頻道為每一位高三的莘莘學(xué)子準(zhǔn)備的《高三數(shù)學(xué)必修五《應(yīng)用舉例》教案》助你榜上有名!
    教案【一】
    教學(xué)準(zhǔn)備
    教學(xué)目標(biāo)
    解三角形及應(yīng)用舉例
    教學(xué)重難點
    解三角形及應(yīng)用舉例
    教學(xué)過程
    一.基礎(chǔ)知識精講
    掌握三角形有關(guān)的定理
    利用正弦定理,可以解決以下兩類問題:
    (1)已知兩角和任一邊,求其他兩邊和一角;
    (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);
    利用余弦定理,可以解決以下兩類問題:
    (1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
    掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.
    二.問題討論
    思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
    思維點撥::三角形中的三角變換,應(yīng)靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關(guān)性質(zhì).
    例6:在某海濱城市附近海面有一臺風(fēng),據(jù)檢測,當(dāng)前臺
    風(fēng)中心位于城市O(如圖)的東偏南方向
    300km的海面P處,并以20km/h的速度向西偏北的
    方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,
    并以10km/h的速度不斷增加,問幾小時后該城市開始受到
    臺風(fēng)的侵襲。
    一.小結(jié):
    1.利用正弦定理,可以解決以下兩類問題:
    (1)已知兩角和任一邊,求其他兩邊和一角;
    (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:
    (1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
    3.邊角互化是解三角形問題常用的手段.
    三.作業(yè):P80闖關(guān)訓(xùn)練
    教案【二】
    教學(xué)準(zhǔn)備
    教學(xué)目標(biāo)
    1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
    (1)分析,(2)建模,(3)求解,(4)檢驗;
    2、實際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實際問題的常見題型有:
    測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
    教學(xué)重難點
    1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
    (1)分析,(2)建模,(3)求解,(4)檢驗;
    2、實際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實際問題的常見題型有:
    測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
    教學(xué)過程
    一、知識歸納
    1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
    (1)分析,(2)建模,(3)求解,(4)檢驗;
    2、實際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實際問題的常見題型有:
    測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
    二、例題討論
    一)利用方向角構(gòu)造三角形