奧林匹克數(shù)學(xué)競(jìng)賽或數(shù)學(xué)奧林匹克競(jìng)賽,簡(jiǎn)稱奧數(shù)。奧數(shù)體現(xiàn)了數(shù)學(xué)與奧林匹克體育運(yùn)動(dòng)精神的共通性:更快、更高、更強(qiáng)。國(guó)際數(shù)學(xué)奧林匹克作為一項(xiàng)國(guó)際性賽事,由國(guó)際數(shù)學(xué)教育專家命題,出題范圍超出了所有國(guó)家的義務(wù)教育水平,難度大大超過(guò)大學(xué)入學(xué)考試。下面是為大家?guī)?lái)的初一年級(jí)奧數(shù)知識(shí)點(diǎn):梯形,歡迎大家閱讀。
一、梯形的定義、性質(zhì)及判定:
1.定義:只有一組對(duì)邊平行的四邊形叫做梯形.兩腰相等的梯形叫做等腰梯形;有一個(gè)角是直角的梯形叫做直角梯形.
2.分類:梯形分為一般梯形和特殊梯形,特殊梯形包括等腰梯形和直角梯形.
3.等腰梯形:(1)定義:兩腰相等的梯形是等腰梯形。
(2)性質(zhì):等腰梯形的腰相等,同一底上的兩個(gè)內(nèi)角相等,等腰梯形的對(duì)角線相等。
(3)判定方法:①兩腰相等的梯形是等腰梯形;
②同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;
③對(duì)角線相等的梯形是等腰梯形.
二、三角形、梯形的中位線:
1. 三角形中位線(1)定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(2)定理:三角形的中位線平行于第三邊,并且等于第三邊的一半。
2.梯形中位線(1)定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
(2)定理:梯形中位線平行于兩底,并且等于兩底和的一半。
三、研究梯形問(wèn)題的主要方法:
將梯形問(wèn)題通過(guò)作輔助線轉(zhuǎn)化成三角形、平行四邊形或矩形來(lái)解決。
與些同時(shí),學(xué)生應(yīng)當(dāng)理解并掌握梯形常用的七種輔助線:1.平移一腰;2.過(guò)頂點(diǎn)作高;3.平行一條對(duì)角線;4.延長(zhǎng)兩腰相交于一點(diǎn);5.過(guò)一腰中點(diǎn)和頂點(diǎn)作直線;6.過(guò)一腰的中點(diǎn)作另一腰的平行線;7.作梯形的中位線。
一、梯形的定義、性質(zhì)及判定:
1.定義:只有一組對(duì)邊平行的四邊形叫做梯形.兩腰相等的梯形叫做等腰梯形;有一個(gè)角是直角的梯形叫做直角梯形.
2.分類:梯形分為一般梯形和特殊梯形,特殊梯形包括等腰梯形和直角梯形.
3.等腰梯形:(1)定義:兩腰相等的梯形是等腰梯形。
(2)性質(zhì):等腰梯形的腰相等,同一底上的兩個(gè)內(nèi)角相等,等腰梯形的對(duì)角線相等。
(3)判定方法:①兩腰相等的梯形是等腰梯形;
②同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;
③對(duì)角線相等的梯形是等腰梯形.
二、三角形、梯形的中位線:
1. 三角形中位線(1)定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(2)定理:三角形的中位線平行于第三邊,并且等于第三邊的一半。
2.梯形中位線(1)定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
(2)定理:梯形中位線平行于兩底,并且等于兩底和的一半。
三、研究梯形問(wèn)題的主要方法:
將梯形問(wèn)題通過(guò)作輔助線轉(zhuǎn)化成三角形、平行四邊形或矩形來(lái)解決。
與些同時(shí),學(xué)生應(yīng)當(dāng)理解并掌握梯形常用的七種輔助線:1.平移一腰;2.過(guò)頂點(diǎn)作高;3.平行一條對(duì)角線;4.延長(zhǎng)兩腰相交于一點(diǎn);5.過(guò)一腰中點(diǎn)和頂點(diǎn)作直線;6.過(guò)一腰的中點(diǎn)作另一腰的平行線;7.作梯形的中位線。