奧林匹克數(shù)學(xué)競(jìng)賽或數(shù)學(xué)奧林匹克競(jìng)賽,簡(jiǎn)稱奧數(shù)。奧數(shù)體現(xiàn)了數(shù)學(xué)與奧林匹克體育運(yùn)動(dòng)精神的共通性:更快、更高、更強(qiáng)。國(guó)際數(shù)學(xué)奧林匹克作為一項(xiàng)國(guó)際性賽事,由國(guó)際數(shù)學(xué)教育專家命題,出題范圍超出了所有國(guó)家的義務(wù)教育水平,難度大大超過大學(xué)入學(xué)考試。下面是為大家?guī)淼某跻荒昙?jí)奧數(shù)知識(shí)點(diǎn):角平分線的性質(zhì),歡迎大家閱讀。
1、角平分線的定義:從一個(gè)角的頂點(diǎn)出發(fā)把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線。
如下圖:OC平分∠AOB
∵OC平分∠AOB
∴∠AOC=∠BOC
2、角的平分線的性質(zhì):角平分線上的點(diǎn)到角的兩邊的距離相等。
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此時(shí)我們知道△OPE≌△OPD(直角三角形 斜邊是OP即公共邊,直角邊斜邊)
3、角的平分線的判定:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、線段的中點(diǎn)的定義:把一條線段分成兩條相等的線段的點(diǎn)叫做線段的中點(diǎn)。
∵C是AB的中點(diǎn)
∴AC=BC
5、垂直的定義:兩條直線相交所成的四個(gè)角中有一個(gè)是直角,這兩條直線互相垂直。
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC =∠BOD=90°
或∵∠AOC=90°
∴AB⊥CD
注意:要判斷兩條直線垂直,只要知道這兩條相交直線所形成的四個(gè)角中的
一個(gè)角是直角就可以了。反過來,兩條直線互相垂直,它們的四個(gè)交角都是直角。
6、全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等。
∵△ABC≌△A'B'C'
∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C'
1、角平分線的定義:從一個(gè)角的頂點(diǎn)出發(fā)把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線。
如下圖:OC平分∠AOB
∵OC平分∠AOB
∴∠AOC=∠BOC
2、角的平分線的性質(zhì):角平分線上的點(diǎn)到角的兩邊的距離相等。
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此時(shí)我們知道△OPE≌△OPD(直角三角形 斜邊是OP即公共邊,直角邊斜邊)
3、角的平分線的判定:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、線段的中點(diǎn)的定義:把一條線段分成兩條相等的線段的點(diǎn)叫做線段的中點(diǎn)。
∵C是AB的中點(diǎn)
∴AC=BC
5、垂直的定義:兩條直線相交所成的四個(gè)角中有一個(gè)是直角,這兩條直線互相垂直。
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC =∠BOD=90°
或∵∠AOC=90°
∴AB⊥CD
注意:要判斷兩條直線垂直,只要知道這兩條相交直線所形成的四個(gè)角中的
一個(gè)角是直角就可以了。反過來,兩條直線互相垂直,它們的四個(gè)交角都是直角。
6、全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等。
∵△ABC≌△A'B'C'
∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C'

