奧林匹克數(shù)學競賽或數(shù)學奧林匹克競賽,簡稱奧數(shù)。奧數(shù)體現(xiàn)了數(shù)學與奧林匹克體育運動精神的共通性:更快、更高、更強。國際數(shù)學奧林匹克作為一項國際性賽事,由國際數(shù)學教育專家命題,出題范圍超出了所有國家的義務教育水平,難度大大超過大學入學考試。下面是為大家?guī)淼木拍昙墛W數(shù)知識點:利用三角函數(shù)測高,歡迎大家閱讀。
1、解直角三角形的應用
(1)通過解直角三角形能解決實際問題中的很多有關測量問題.
如:測不易直接測量的物體的高度、測河寬等,關鍵在于構造出直角三角形,通過測量角的度數(shù)和測量邊的長度,計算出所要求的物體的高度或長度.
(2)解直角三角形的一般過程是:
①將實際問題抽象為數(shù)學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).
②根據(jù)題目已知特點選用適當銳角三角函數(shù)或邊角關系去解直角三角形,得到數(shù)學問題的答案,再轉化得到實際問題的答案.
2、仰角俯角問題
(1)概念:仰角是向上看的視線與水平線的夾角;俯角是向下看的視線與水平線的夾角.
(2)解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形,另當問題以一個實際問題的形式給出時,要善于讀懂題意,把實際問題劃歸為直角三角形中邊角關系問題加以解決.
3、方向角問題
(1)在辨別方向角問題中:一般是以第一個方向為始邊向另一個方向旋轉相應度數(shù).
(2)在解決有關方向角的問題中,一般要根據(jù)題意理清圖形中各角的關系,有時所給的方向角并不一定在直角三角形中,需要用到兩直線平行內錯角相等或一個角的余角等知識轉化為所需要的角.
1、解直角三角形的應用
(1)通過解直角三角形能解決實際問題中的很多有關測量問題.
如:測不易直接測量的物體的高度、測河寬等,關鍵在于構造出直角三角形,通過測量角的度數(shù)和測量邊的長度,計算出所要求的物體的高度或長度.
(2)解直角三角形的一般過程是:
①將實際問題抽象為數(shù)學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).
②根據(jù)題目已知特點選用適當銳角三角函數(shù)或邊角關系去解直角三角形,得到數(shù)學問題的答案,再轉化得到實際問題的答案.
2、仰角俯角問題
(1)概念:仰角是向上看的視線與水平線的夾角;俯角是向下看的視線與水平線的夾角.
(2)解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形,另當問題以一個實際問題的形式給出時,要善于讀懂題意,把實際問題劃歸為直角三角形中邊角關系問題加以解決.
3、方向角問題
(1)在辨別方向角問題中:一般是以第一個方向為始邊向另一個方向旋轉相應度數(shù).
(2)在解決有關方向角的問題中,一般要根據(jù)題意理清圖形中各角的關系,有時所給的方向角并不一定在直角三角形中,需要用到兩直線平行內錯角相等或一個角的余角等知識轉化為所需要的角.