在解奧數(shù)題時(shí),經(jīng)常要提醒自己,遇到的新問題能否轉(zhuǎn)化成舊問題解決,化新為舊,透過表面,抓住問題的實(shí)質(zhì),將問題轉(zhuǎn)化成自己熟悉的問題去解答。轉(zhuǎn)化的類型有條件轉(zhuǎn)化、問題轉(zhuǎn)化、關(guān)系轉(zhuǎn)化、圖形轉(zhuǎn)化等。以下是整理的《小學(xué)生奧數(shù)流水行船、列方程解行程問題練習(xí)題》相關(guān)資料,希望幫助到您。
1.小學(xué)生奧數(shù)流水行船問題練習(xí)題
1、一條大河,河中間(主航道)的水流速度是每小時(shí)8千米,沿岸邊的水流速度是每小時(shí)6千米。一只船在河中間順流而下,6.5小時(shí)行駛260千米。求這只船沿岸邊返回原地需要多少小時(shí)?(適于高年級程度)
解:此船順流而下的速度是:
260÷6.5=40(千米/小時(shí))
此船在靜水中的速度是:
40-8=32(千米/小時(shí))
此船沿岸邊逆水而行的速度是:
32-6=26(千米/小時(shí))
此船沿岸邊返回原地需要的時(shí)間是:
260÷26=10(小時(shí))
綜合算式:
260÷(260÷6.5-8-6)
=260÷(40-8-6)
=260÷26
=10(小時(shí))
2、一只船在水流速度是2500米/小時(shí)的水中航行,逆水行120千米用24小時(shí)。順?biāo)?50千米需要多少小時(shí)?(適于高年級程度)
解:此船逆水航行的速度是:
120000÷24=5000(米/小時(shí))
此船在靜水中航行的速度是:
5000+2500=7500(米/小時(shí))
此船順?biāo)叫械乃俣仁牵?BR> 7500+2500=10000(米/小時(shí))
順?biāo)叫?50千米需要的時(shí)間是:
150000÷10000=15(小時(shí))
綜合算式:
150000÷(120000÷24+2500×2)
=150000÷(5000+5000)
=150000÷10000
=15(小時(shí))
2.小學(xué)生奧數(shù)流水行船問題練習(xí)題
1、甲、乙之間的水路是234千米,一只船從甲港到乙港需9小時(shí),從乙港返回甲港需13小時(shí),問船速和水速各為每小時(shí)多少千米?
2、一艘每小時(shí)行25千米的客輪,在大運(yùn)河中順?biāo)叫?40千米,水速是每小時(shí)3千米,需要行幾個(gè)小時(shí)?
3、一只小船靜水中速度為每小時(shí)30千米。在176千米長河中逆水而行用了11個(gè)小時(shí)。求返回原處需用幾個(gè)小時(shí)。
4、一只船在河里航行,順流而下每小時(shí)行18千米。已知這只船下行2小時(shí)恰好與上行3小時(shí)所行的路程相等。求船速和水速。
5、兩個(gè)碼頭相距352千米,一船順流而下,行完全程需要11小時(shí)。逆流而上,行完全程需要16小時(shí),求這條河水流速度。
6、A、B兩碼頭間河流長為90千米,甲、乙兩船分別從A、B碼頭同時(shí)啟航。如果相向而行3小時(shí)相遇,如果同向而行15小時(shí)甲船追上乙船,求兩船在靜水中的速度。
7、乙船順?biāo)叫?小時(shí),行了120千米,返回原地用了4小時(shí)。甲船順?biāo)叫型欢嗡?,用?小時(shí)。甲船返回原地比去時(shí)多用了幾小時(shí)?
8、某河有相距45千米的上、下兩碼頭,每天定時(shí)有甲、乙兩艘船速相同的客輪分別從兩碼頭同時(shí)出發(fā)相向而行。一天甲船從上游碼頭出發(fā)時(shí)掉下一物,此物浮于水面順?biāo)h下,4分鐘后,與甲船相距1千米。預(yù)計(jì)乙船出發(fā)后幾小時(shí)可以與此物相遇?
3.小學(xué)生奧數(shù)流水行船問題練習(xí)題
1、一只漁船順?biāo)?5千米,用了5小時(shí),水流的速度是每小時(shí)1千米。此船在靜水中的速度是多少?(適于高年級程度)
解:此船的順?biāo)俣仁牵?BR> 25÷5=5(千米/小時(shí))
因?yàn)椤绊標(biāo)俣?船速+水速”,所以,此船在靜水中的速度是“順?biāo)俣?水速”。
5-1=4(千米/小時(shí))
綜合算式:
25÷5-1=4(千米/小時(shí))
答:此船在靜水中每小時(shí)行4千米。
2、一只漁船在靜水中每小時(shí)航行4千米,逆水4小時(shí)航行12千米。水流的速度是每小時(shí)多少千米?(適于高年級程度)
解:此船在逆水中的速度是:
12÷4=3(千米/小時(shí))
因?yàn)槟嫠俣?船速-水速,所以水速=船速-逆水速度,即:
4-3=1(千米/小時(shí))
答:水流速度是每小時(shí)1千米。
3、一只船,順?biāo)啃r(shí)行20千米,逆水每小時(shí)行12千米。這只船在靜水中的速度和水流的速度各是多少?(適于高年級程度)
解:因?yàn)榇陟o水中的速度=(順?biāo)俣?逆水速度)÷2,所以,這只船在靜水中的速度是:
(20+12)÷2=16(千米/小時(shí))
因?yàn)樗鞯乃俣?(順?biāo)俣?逆水速度)÷2,所以水流的速度是:
(20-12)÷2=4(千米/小時(shí))
4.小學(xué)生奧數(shù)列方程解行程問題練習(xí)題
鐵路旁的一條與鐵路平行的小路上,有一行人與騎車人同時(shí)向南行進(jìn),行人速度為3.6千米/時(shí),騎車人速度為10.8千米/時(shí),這時(shí)有一列火車從他們背后開過來,火車通過行人用22秒,通過騎車人用26秒,這列火車的車身總長是多少?
【解】:分析:本題屬于追及問題,行人的速度為3.6千米/時(shí)=1米/秒,騎車人的速度為10.8千米/時(shí)=3米/秒。火車的車身長度既等于火車車尾與行人的路程差,也等于火車車尾與騎車人的路程差。如果設(shè)火車的速度為x米/秒,那么火車的車身長度可表示為(x-1)×22或(x-3)×26,由此不難列出方程。
法一:設(shè)這列火車的速度是x米/秒,依題意列方程,得
(x-1)×22=(x-3)×26。
解得x=14。所以火車的車身長為(14-1)×22=286(米)。
法二:直接設(shè)火車的車長是x,那么等量關(guān)系就在于火車的速度上。
可得:x/26+3=x/22+1
這樣直接也可以x=286米
法三:既然是路程相同我們同樣可以利用速度和時(shí)間成反比來解決。
兩次的追及時(shí)間比是:22:26=11:13
所以可得:(V車-1):(V車-3)=13:11
可得V車=14米/秒
所以火車的車長是(14-1)×22=286(米)
答:這列火車的車身總長為286米。
5.小學(xué)生奧數(shù)列方程解行程問題練習(xí)題
1、甲、乙兩船分別在一條河的A、B兩地同時(shí)相向而行,甲順流而下,乙逆流而上。相遇時(shí),甲乙兩船行了相等的航程,相遇后繼續(xù)前進(jìn)。甲到達(dá)B,乙到達(dá)A后,都按照原路返航,兩船第二次相遇時(shí),甲船比乙船少行1000米。如果從第一次相遇到第二次相遇時(shí)間間隔1小時(shí)20分,則河水的流速是多少?
2、甲、乙兩港間的水路長208千米,一只船從甲港開往乙港,順?biāo)?小時(shí)到達(dá),從乙港返回甲港,逆水13小時(shí)到達(dá),求船在靜水中的速度和水流速度。
3、某船在靜水中的速度是每小時(shí)15千米,它從上游甲地開往下游乙地共花去了8小時(shí),水速每小時(shí)3千米,問從乙地返回甲地需要多少時(shí)間?
4、摩托車駕駛員以每個(gè)小時(shí)40千米的速度行了120千米,回來的時(shí)候都督提高了50%,那么往返的平均速度是多少多少千米每個(gè)小時(shí)?
5、一輛客車和火車分別從甲乙輛地同時(shí)相向而行,4小時(shí)后相遇,如果客車行3小時(shí),火車行2小時(shí),兩車還會相距全程的11/30。問,客車行完全程需要多少小時(shí)的時(shí)間?
1.小學(xué)生奧數(shù)流水行船問題練習(xí)題
1、一條大河,河中間(主航道)的水流速度是每小時(shí)8千米,沿岸邊的水流速度是每小時(shí)6千米。一只船在河中間順流而下,6.5小時(shí)行駛260千米。求這只船沿岸邊返回原地需要多少小時(shí)?(適于高年級程度)
解:此船順流而下的速度是:
260÷6.5=40(千米/小時(shí))
此船在靜水中的速度是:
40-8=32(千米/小時(shí))
此船沿岸邊逆水而行的速度是:
32-6=26(千米/小時(shí))
此船沿岸邊返回原地需要的時(shí)間是:
260÷26=10(小時(shí))
綜合算式:
260÷(260÷6.5-8-6)
=260÷(40-8-6)
=260÷26
=10(小時(shí))
2、一只船在水流速度是2500米/小時(shí)的水中航行,逆水行120千米用24小時(shí)。順?biāo)?50千米需要多少小時(shí)?(適于高年級程度)
解:此船逆水航行的速度是:
120000÷24=5000(米/小時(shí))
此船在靜水中航行的速度是:
5000+2500=7500(米/小時(shí))
此船順?biāo)叫械乃俣仁牵?BR> 7500+2500=10000(米/小時(shí))
順?biāo)叫?50千米需要的時(shí)間是:
150000÷10000=15(小時(shí))
綜合算式:
150000÷(120000÷24+2500×2)
=150000÷(5000+5000)
=150000÷10000
=15(小時(shí))
2.小學(xué)生奧數(shù)流水行船問題練習(xí)題
1、甲、乙之間的水路是234千米,一只船從甲港到乙港需9小時(shí),從乙港返回甲港需13小時(shí),問船速和水速各為每小時(shí)多少千米?
2、一艘每小時(shí)行25千米的客輪,在大運(yùn)河中順?biāo)叫?40千米,水速是每小時(shí)3千米,需要行幾個(gè)小時(shí)?
3、一只小船靜水中速度為每小時(shí)30千米。在176千米長河中逆水而行用了11個(gè)小時(shí)。求返回原處需用幾個(gè)小時(shí)。
4、一只船在河里航行,順流而下每小時(shí)行18千米。已知這只船下行2小時(shí)恰好與上行3小時(shí)所行的路程相等。求船速和水速。
5、兩個(gè)碼頭相距352千米,一船順流而下,行完全程需要11小時(shí)。逆流而上,行完全程需要16小時(shí),求這條河水流速度。
6、A、B兩碼頭間河流長為90千米,甲、乙兩船分別從A、B碼頭同時(shí)啟航。如果相向而行3小時(shí)相遇,如果同向而行15小時(shí)甲船追上乙船,求兩船在靜水中的速度。
7、乙船順?biāo)叫?小時(shí),行了120千米,返回原地用了4小時(shí)。甲船順?biāo)叫型欢嗡?,用?小時(shí)。甲船返回原地比去時(shí)多用了幾小時(shí)?
8、某河有相距45千米的上、下兩碼頭,每天定時(shí)有甲、乙兩艘船速相同的客輪分別從兩碼頭同時(shí)出發(fā)相向而行。一天甲船從上游碼頭出發(fā)時(shí)掉下一物,此物浮于水面順?biāo)h下,4分鐘后,與甲船相距1千米。預(yù)計(jì)乙船出發(fā)后幾小時(shí)可以與此物相遇?
3.小學(xué)生奧數(shù)流水行船問題練習(xí)題
1、一只漁船順?biāo)?5千米,用了5小時(shí),水流的速度是每小時(shí)1千米。此船在靜水中的速度是多少?(適于高年級程度)
解:此船的順?biāo)俣仁牵?BR> 25÷5=5(千米/小時(shí))
因?yàn)椤绊標(biāo)俣?船速+水速”,所以,此船在靜水中的速度是“順?biāo)俣?水速”。
5-1=4(千米/小時(shí))
綜合算式:
25÷5-1=4(千米/小時(shí))
答:此船在靜水中每小時(shí)行4千米。
2、一只漁船在靜水中每小時(shí)航行4千米,逆水4小時(shí)航行12千米。水流的速度是每小時(shí)多少千米?(適于高年級程度)
解:此船在逆水中的速度是:
12÷4=3(千米/小時(shí))
因?yàn)槟嫠俣?船速-水速,所以水速=船速-逆水速度,即:
4-3=1(千米/小時(shí))
答:水流速度是每小時(shí)1千米。
3、一只船,順?biāo)啃r(shí)行20千米,逆水每小時(shí)行12千米。這只船在靜水中的速度和水流的速度各是多少?(適于高年級程度)
解:因?yàn)榇陟o水中的速度=(順?biāo)俣?逆水速度)÷2,所以,這只船在靜水中的速度是:
(20+12)÷2=16(千米/小時(shí))
因?yàn)樗鞯乃俣?(順?biāo)俣?逆水速度)÷2,所以水流的速度是:
(20-12)÷2=4(千米/小時(shí))
4.小學(xué)生奧數(shù)列方程解行程問題練習(xí)題
鐵路旁的一條與鐵路平行的小路上,有一行人與騎車人同時(shí)向南行進(jìn),行人速度為3.6千米/時(shí),騎車人速度為10.8千米/時(shí),這時(shí)有一列火車從他們背后開過來,火車通過行人用22秒,通過騎車人用26秒,這列火車的車身總長是多少?
【解】:分析:本題屬于追及問題,行人的速度為3.6千米/時(shí)=1米/秒,騎車人的速度為10.8千米/時(shí)=3米/秒。火車的車身長度既等于火車車尾與行人的路程差,也等于火車車尾與騎車人的路程差。如果設(shè)火車的速度為x米/秒,那么火車的車身長度可表示為(x-1)×22或(x-3)×26,由此不難列出方程。
法一:設(shè)這列火車的速度是x米/秒,依題意列方程,得
(x-1)×22=(x-3)×26。
解得x=14。所以火車的車身長為(14-1)×22=286(米)。
法二:直接設(shè)火車的車長是x,那么等量關(guān)系就在于火車的速度上。
可得:x/26+3=x/22+1
這樣直接也可以x=286米
法三:既然是路程相同我們同樣可以利用速度和時(shí)間成反比來解決。
兩次的追及時(shí)間比是:22:26=11:13
所以可得:(V車-1):(V車-3)=13:11
可得V車=14米/秒
所以火車的車長是(14-1)×22=286(米)
答:這列火車的車身總長為286米。
5.小學(xué)生奧數(shù)列方程解行程問題練習(xí)題
1、甲、乙兩船分別在一條河的A、B兩地同時(shí)相向而行,甲順流而下,乙逆流而上。相遇時(shí),甲乙兩船行了相等的航程,相遇后繼續(xù)前進(jìn)。甲到達(dá)B,乙到達(dá)A后,都按照原路返航,兩船第二次相遇時(shí),甲船比乙船少行1000米。如果從第一次相遇到第二次相遇時(shí)間間隔1小時(shí)20分,則河水的流速是多少?
2、甲、乙兩港間的水路長208千米,一只船從甲港開往乙港,順?biāo)?小時(shí)到達(dá),從乙港返回甲港,逆水13小時(shí)到達(dá),求船在靜水中的速度和水流速度。
3、某船在靜水中的速度是每小時(shí)15千米,它從上游甲地開往下游乙地共花去了8小時(shí),水速每小時(shí)3千米,問從乙地返回甲地需要多少時(shí)間?
4、摩托車駕駛員以每個(gè)小時(shí)40千米的速度行了120千米,回來的時(shí)候都督提高了50%,那么往返的平均速度是多少多少千米每個(gè)小時(shí)?
5、一輛客車和火車分別從甲乙輛地同時(shí)相向而行,4小時(shí)后相遇,如果客車行3小時(shí),火車行2小時(shí),兩車還會相距全程的11/30。問,客車行完全程需要多少小時(shí)的時(shí)間?