反比例函數(shù)的定義
定義:形如函數(shù)y=k/x(k為常數(shù)且k≠0)叫做反比例函數(shù),其中k叫做比例系數(shù),x是自變量,y是自變量x的函數(shù),x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)的性質(zhì)
函數(shù)y=k/x 稱(chēng)為反比例函數(shù),其中k≠0,其中X是自變量,
1.當(dāng)k>0時(shí),圖象分別位于第一、三象限,同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),圖象分別位于二、四象限,同一個(gè)象限內(nèi),y隨x的增大而增大。
2.k>0時(shí),函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時(shí),函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。
3.x的取值范圍是:x≠0;
y的取值范圍是:y≠0。
4……因?yàn)樵趛=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。 但隨著x無(wú)限增大或是無(wú)限減少,函數(shù)值無(wú)限趨近于0,故圖像無(wú)限接近于x軸。
5. 反比例函數(shù)的圖象既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形,它有兩條對(duì)稱(chēng)軸 y=x y=-x(即第一三,二四象限角平分線(xiàn)),對(duì)稱(chēng)中心是坐標(biāo)原點(diǎn)。
1.對(duì)稱(chēng)軸:如果一個(gè)圖形沿某條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形;這條直線(xiàn)叫做對(duì)稱(chēng)軸。
2.性質(zhì):(1)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。
(2)角平分線(xiàn)上的點(diǎn)到角兩邊距離相等。
(3)線(xiàn)段垂直平分線(xiàn)上的任意一點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。
(5)軸對(duì)稱(chēng)圖形上對(duì)應(yīng)線(xiàn)段相等、對(duì)應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
4.等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合,簡(jiǎn)稱(chēng)為“三線(xiàn)合一”。
5.等腰三角形的判定:等角對(duì)等邊。
6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。
定義:形如函數(shù)y=k/x(k為常數(shù)且k≠0)叫做反比例函數(shù),其中k叫做比例系數(shù),x是自變量,y是自變量x的函數(shù),x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)的性質(zhì)
函數(shù)y=k/x 稱(chēng)為反比例函數(shù),其中k≠0,其中X是自變量,
1.當(dāng)k>0時(shí),圖象分別位于第一、三象限,同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),圖象分別位于二、四象限,同一個(gè)象限內(nèi),y隨x的增大而增大。
2.k>0時(shí),函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時(shí),函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。
3.x的取值范圍是:x≠0;
y的取值范圍是:y≠0。
4……因?yàn)樵趛=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。 但隨著x無(wú)限增大或是無(wú)限減少,函數(shù)值無(wú)限趨近于0,故圖像無(wú)限接近于x軸。
5. 反比例函數(shù)的圖象既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形,它有兩條對(duì)稱(chēng)軸 y=x y=-x(即第一三,二四象限角平分線(xiàn)),對(duì)稱(chēng)中心是坐標(biāo)原點(diǎn)。
1.對(duì)稱(chēng)軸:如果一個(gè)圖形沿某條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形;這條直線(xiàn)叫做對(duì)稱(chēng)軸。
2.性質(zhì):(1)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。
(2)角平分線(xiàn)上的點(diǎn)到角兩邊距離相等。
(3)線(xiàn)段垂直平分線(xiàn)上的任意一點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。
(5)軸對(duì)稱(chēng)圖形上對(duì)應(yīng)線(xiàn)段相等、對(duì)應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
4.等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合,簡(jiǎn)稱(chēng)為“三線(xiàn)合一”。
5.等腰三角形的判定:等角對(duì)等邊。
6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。