基礎(chǔ)知識(shí)
1、C 2、C
3、題目略
(1)AB CD 同位角相等,兩直線平行
(2)∠C 內(nèi)錯(cuò)角相等,兩直線平行
(3) ∠EFB 內(nèi)錯(cuò)角相等,兩直線平行
4、108°
5、同位角相等,兩直線平行
6、已知 ∠ABF ∠EFC 垂直的性質(zhì) AB 同位角相等,兩直線平行 已知 DC 內(nèi)錯(cuò)角相等,兩直線平行 AB CD 平行的傳遞性
能力提升
7、B 8、B
9、平行 已知 ∠CDB 垂直的性質(zhì) 同位角相等,兩直線平行 三角形內(nèi)角和為180° 三角形內(nèi)角和為180° ∠DCB 等量代換 已知 ∠DCB 等量代換 DE BC 內(nèi)錯(cuò)角相等,兩直線平行
10、證明:
(1)∵CD是∠ACB的平分線(已知)
∴∠ECD=∠BCD
∵∠EDC=∠DCE=25°(已知)
∴∠EDC=∠BCD=25°
∴DE∥BC(內(nèi)錯(cuò)角相等,兩直線平行)
(2)∵DE∥BC
∴∠BDE+∠B=180° 即∠EBC+∠BDC+∠B=180°
∵∠B=70° ∠EDC=25°
∴∠BDC=180°-70°-25°=85°
11、平行
∵BD⊥BE
∴∠DBE=90°
∵∠1+∠2+∠DBE=180°
∴∠1+∠2=90°
∵∠1+∠C=90°
∴∠2=∠C
∴BE∥FC(同位角相等,兩直線平行)
探索研究
12、證明:
∵M(jìn)N⊥AB EF⊥AB
∴∠ANM=90° ∠EFB=90°
∵∠ANM+∠MNF=180° ∠NFE+∠EFB=180°
∴∠MNF=∠EFB=90°
∴MN∥FE
1、C 2、C
3、題目略
(1)AB CD 同位角相等,兩直線平行
(2)∠C 內(nèi)錯(cuò)角相等,兩直線平行
(3) ∠EFB 內(nèi)錯(cuò)角相等,兩直線平行
4、108°
5、同位角相等,兩直線平行
6、已知 ∠ABF ∠EFC 垂直的性質(zhì) AB 同位角相等,兩直線平行 已知 DC 內(nèi)錯(cuò)角相等,兩直線平行 AB CD 平行的傳遞性
能力提升
7、B 8、B
9、平行 已知 ∠CDB 垂直的性質(zhì) 同位角相等,兩直線平行 三角形內(nèi)角和為180° 三角形內(nèi)角和為180° ∠DCB 等量代換 已知 ∠DCB 等量代換 DE BC 內(nèi)錯(cuò)角相等,兩直線平行
10、證明:
(1)∵CD是∠ACB的平分線(已知)
∴∠ECD=∠BCD
∵∠EDC=∠DCE=25°(已知)
∴∠EDC=∠BCD=25°
∴DE∥BC(內(nèi)錯(cuò)角相等,兩直線平行)
(2)∵DE∥BC
∴∠BDE+∠B=180° 即∠EBC+∠BDC+∠B=180°
∵∠B=70° ∠EDC=25°
∴∠BDC=180°-70°-25°=85°
11、平行
∵BD⊥BE
∴∠DBE=90°
∵∠1+∠2+∠DBE=180°
∴∠1+∠2=90°
∵∠1+∠C=90°
∴∠2=∠C
∴BE∥FC(同位角相等,兩直線平行)
探索研究
12、證明:
∵M(jìn)N⊥AB EF⊥AB
∴∠ANM=90° ∠EFB=90°
∵∠ANM+∠MNF=180° ∠NFE+∠EFB=180°
∴∠MNF=∠EFB=90°
∴MN∥FE