初中一年級數(shù)學下冊知識點(新人教版)

字號:

1.有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)其中a表示橫軸,b表示縱軸。
    2.平面直角坐標系:在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與垂直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,豎直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
    3.橫軸、縱軸、原點:水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
    4.坐標:對于平面內(nèi)任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點P的橫坐標和縱坐標。
    5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內(nèi)。
    6.特殊位置的點的坐標的特點
    (1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
    (2)第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數(shù)。
    (3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
    (4)點到軸及原點的距離。
    點到x軸的距離為|y|;點到y(tǒng)軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
    7.在平面直角坐標系中對稱點的特點
    (1)關(guān)于x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數(shù)。(橫同縱反)
    (2)關(guān)于y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數(shù)。(橫反縱同)
    (3)關(guān)于原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數(shù),縱坐標與縱坐標互為相反數(shù)。(橫縱皆反)
    1.不等式:用符號,,,表示大小關(guān)系的式子叫做不等式。
    2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
    一般地,用純粹的大于號、小于號,連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號),連接的不等式稱為非嚴格不等式,或稱廣義不等式。
    3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
    4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
    5.不等式解集的表示方法:
    (1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-12的解集是x3
    (2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
    6.解不等式可遵循的一些同解原理
    (1)不等式F(x) G(x)與不等式 G(x)F(x)同解。
    (2)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x) G(x)與不等式H(x)+F(x)
    (3)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)H(x)G(x)同解。