八年級(jí)上冊(cè)數(shù)學(xué)答案(2016)

字號(hào):

第2章 特殊三角形
    2.AB 與CD 平行.量得線段BD 的長(zhǎng)約為2cm,所以兩電線桿間的距離約為120m
    【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,2.3個(gè);△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=C
    F3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM ⊥l5.如圖,答案不,圖中點(diǎn)C1,C2,C3均可2于 M,BN ⊥l3于 N,則 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=15cm7.AP 平分∠BAC.理由如下:由 AP 是中線,得 BP=復(fù)習(xí)題PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50 2.(1)∠4 (2)∠3 (3)∠1 ∴ ∠BAP=∠CAP(第5題)3.(1)∠B,兩直線平行,同位角相等
    【2.2】(2)∠5,內(nèi)錯(cuò)角相等,兩直線平行(3)∠BCD,CD,同旁內(nèi)角互補(bǔ),兩直線平行1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如圖,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25題) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS). ∴ BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本題也可用面積法求解)∴ ∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D
    【2.3】8.不正確,畫圖略1.70°,等腰 2.3 3.70°或40°9.因?yàn)椤希牛拢茫健希保健希?,所以DE∥BC.所以∠AED=∠C=70°4.△BC?是等腰三角形.理由如下:由BD,CD 分別是∠ABC,∠ACB 的平50 分線,得∠DBC=∠DCB.則DB=DC