北師大版2017九年級下冊數(shù)學(xué)課本答案

字號:

1.解:∵PA與PB分別切⊙O于A,B兩點(diǎn),DE切⊙O于點(diǎn)C,
     ∴DA=DC,CE=EB.
     ∵△PDE的周長=PD+DE+EP
     =PD+DC+CE+EP
     =PD+DA+EB+EP
     =PA+PB,
    又∵PA=PB=5cm,
    ∴△PDE的周長=2×5=10(cm).
    2.解:由切線長定理知AE=AF,BF=BD,CE=CD.
    令A(yù)E=AF=xcm,BF =BD=ycm,CE=CD=z cm.
    ∵AC=AE+CE=x+z=13,
    AB=AF+BF=x+ y=9,BC=BD+CD=y+z=14.
    ∴AF=4cm,BD=5cm,CE=9cm.
    3.解:如圖3-7-14所示,連接OA,OB.
    ∵PA,PB切⊙O于點(diǎn)A,B
    ∴OA⊥PA,OB⊥PB,
    ∴∠OAP=∠ OBP=90°.
    在四邊形OAPB中,∠AOB+∠P=180°,
    又∵∠P= 40°,∴∠AOB=140°.
    ∵OA =OB,∴∠OAB=∠OBA=20°.
    又∵OA⊥PA,OB⊥PB,
    ∴∠FAD=∠EBD=90°-20°=70°.
    又∵在△DBE和△FAD中,
    ∴△DBE≌△FAD(SAS),
    ∴∠ADF=∠BED,∠BDE=∠AFD.
    ∴∠ADF+∠BDE=∠ADF+∠AFD=180°-∠FAD=180°- 70°=110°.
    又∵∠ADF+∠BDE+∠EDF=180°,
     ∴∠EDF=180°一(∠ADF+∠BDE) =180°-110°=70°.
    4.解:(1)能,首先以B點(diǎn)為端點(diǎn)將BA與BC重合在一起折出∠ABC的平分線所在的線段,其次將BC與DC重合折出∠BCD的平分線所在的線段,兩條線段的交點(diǎn)即為圓心O,量出圓心到BC邊的距離約為3.4 cm.
    (2)如圖3-7-15所示,
    連接AC,根據(jù)折疊得到圓心O在線段AC上,設(shè)⊙O與四邊形ABCD四邊AB,BC,CD,DA均相切,且切點(diǎn)分別為M,N,P,Q.
    在△ABC和△ADC中,
    ∴△ABC≌△ADC(SSS).
    ∴∠D=∠B=90°.
    ∴S△ABC=S△ADC
    連接OM,ON,OQ,OP,設(shè)⊙O的半徑為r,連接OB,OD.
    ∴S四邊形ABCD=2△ABC =2×1/2 AB ∙ BC= AB .BC=6×8=48(cm²).
    又∵S四邊形ABCD
    =1/2 AB.r+1/2 BC.R+1/2 AD ∙r+1/2 CD. r
    =1/2×6×r+1/2×8×r+1/2×6×r +1/2×8×r =3r+4r+3r+4r=14r,
    ∴14r=48,∴r=24/7(cm).
    ∴圓形紙片的半徑為24/7cm.