95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96 性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97 性質(zhì)定理2 相似三角形周長的比等于相似比
98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101 圓是定點的距離等于定長的點的集合
102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103 圓的外部可以看作是圓心的距離大于半徑的點的集合
104 同圓或等圓的半徑相等
105 到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109 定理 不在同一直線上的三點確定一個圓。
110 垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111 推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112 推論2 圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對稱中心的中心對稱圖形
114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116 定理 一條弧所對的圓周角等于它所對的圓心角的一半
117 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119 推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120 定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
96 性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97 性質(zhì)定理2 相似三角形周長的比等于相似比
98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101 圓是定點的距離等于定長的點的集合
102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103 圓的外部可以看作是圓心的距離大于半徑的點的集合
104 同圓或等圓的半徑相等
105 到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109 定理 不在同一直線上的三點確定一個圓。
110 垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111 推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112 推論2 圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對稱中心的中心對稱圖形
114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116 定理 一條弧所對的圓周角等于它所對的圓心角的一半
117 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119 推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120 定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角