初中九年級(jí)數(shù)學(xué)教案:函數(shù)

字號(hào):

函數(shù)
    教學(xué)目標(biāo):
    1、進(jìn)一步理解函數(shù)的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;
    2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
    3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系.
    4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.
    5、通過(guò)函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
    教學(xué)重點(diǎn):了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值.
    教學(xué)難點(diǎn):函數(shù)概念的抽象性.
    教學(xué)過(guò)程:
     (一)引入新課:
    上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).
    生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?
    1、學(xué)校計(jì)劃組織春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
    2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
    解:1、y=30n
    y是函數(shù),n是自變量
    2、 ,n是函數(shù),a是自變量.
    (二)講授新課
    剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
    例1、求下列函數(shù)中自變量x的取值范圍.
    (1)  ?。?)
    (3)  ?。?)
    (5)  ?。?)
    分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義.
    (3)小題的 是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
    同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
    第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零. 的被開方數(shù)是 .
    同理,第(6)小題 也是二次根式, 是被開方數(shù),
     .
    解:(1)全體實(shí)數(shù)
    (2)全體實(shí)數(shù)
    (3)
    (4) 且
    (5)
    (6)
    小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.
    注意:有些同學(xué)沒有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要 即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問(wèn)本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問(wèn)題也與次類似.
    但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成 或 .在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說(shuō)明這里 與 是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
    例2、自行車保管站在某個(gè)星期日保管的自行車共有3500輛次,其中變速車保管費(fèi)是每輛0.5元,一般車保管費(fèi)是每次一輛0.3元.
    (1)若設(shè)一般車停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫出y關(guān)于x的函數(shù)關(guān)系式;
    (2)若估計(jì)前來(lái)停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個(gè)星期日收入保管費(fèi)總數(shù)的范圍.
    解:(1)
     (x是正整數(shù),
    (2)若變速車的輛次不小于25%,但不大于40%,
    則
    收入在1225元至1330元之間
    總結(jié):對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問(wèn)題有意義.這樣,就要求聯(lián)系實(shí)際,具體問(wèn)題具體分析.
    對(duì)于函數(shù) ,當(dāng)自變量 時(shí),相應(yīng)的函數(shù)y的值是 .60叫做這個(gè)函數(shù)當(dāng) 時(shí)的函數(shù)值.
    例3、求下列函數(shù)當(dāng) 時(shí)的函數(shù)值:
    (1)  ?。?)
    (3)  ?。?)
    解:1)當(dāng) 時(shí),
    (2)當(dāng) 時(shí),
    (3)當(dāng) 時(shí),
    (4)當(dāng) 時(shí),
    注:本例既鍛煉了學(xué)生的計(jì)算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會(huì)對(duì)于x的每一個(gè)值,y都有確定的值與之對(duì)應(yīng).以此加深對(duì)函數(shù)的理解.
    (二)小結(jié):
    這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念.在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值.另外,對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,要具體問(wèn)題具體分析.
    作業(yè):習(xí)題13.2A組2、3、5