七年級數(shù)學(xué)期中試卷及答案參考

字號:

一.選擇題(本大題共10小題,每小題3分,共30分)
    1.點(diǎn)A(﹣3,﹣5)向上平移4個單位,再向左平移3個單位到點(diǎn)B,則點(diǎn)B的坐標(biāo)為 ( ?。?BR>    A.(1,﹣8) B.(1,﹣2) C.(﹣6,﹣1) D.(0,﹣1)
    2.若三角形的三邊長分別為3,4,x,則x的值可能是(  )
    A.1 B.6 C.7 D.10
    3.一個三角形的三個外角之比為3:4:5,則這個三角形內(nèi)角之比是( ?。?BR>    A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:1
    4.下列函數(shù)中,y是x的一次函數(shù)的是( ?。?BR>    ①y=x﹣6;②y= ;③y= ;④y=7﹣x.
    A.①②③ B.①③④ C.①②③④ D.②③④ 
    5.若直線y=mx+2m﹣3經(jīng)過二、三、四象限,則m的取值范圍是(  )
    A.m< B.m>0 C.m> D.m<0
    6.下列四個圖形中,線段BE是△ABC的高的是( ?。?BR>              
    A.     B.        C.          D.
    7.如圖,△ABC≌△AEF,AB=AE,∠B=∠E,則對于結(jié)論①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正確結(jié)論的個數(shù)是( ?。?BR>    A.1個 B.2個 C.3個 D.4個
    8.小剛以400米/分的速度勻速騎車5分,在原地休息了6分,然后以500米/分的速度騎回出發(fā)地.下列函數(shù)圖象能表達(dá)這一過程的是( ?。?BR>    A. B C D.
    9.如圖,∠MON=90°,點(diǎn)A,B分別在射線OM,ON上運(yùn)動,BE平分∠NBA,BE的反向延長線與∠BAO的平分線交于點(diǎn)C.則∠C的度數(shù)是( ?。?BR>     9題 10題
    A.30° B.45° C.55° D.60°
    10 .如圖所示,已知直線 與x、y軸交于B、C兩點(diǎn),A(0,0),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第n個等邊三角形的邊長等于(  )
     A. B. C. D.
    二.填空題(本大題共8 小題,每小題3分,共24分)
    11.函數(shù)y= 中,自變量x的取值范圍是     ?。?BR>    12.已知一次函數(shù)y=(k﹣1)x|k|+3,則k=     ?。? 
    13.直線y=kx+b與直線y=﹣2x+1平行,且經(jīng)過點(diǎn)(﹣2,3),則kb=      .
    14.如圖,一次函數(shù)y=x+6的圖象經(jīng)過點(diǎn)P(a,b)和Q(c,d),則a(c﹣d)﹣b(c﹣d)的值為     ?。?BR>     14題 15題 17題
    15 如圖,直線l1,l2交于點(diǎn)A,觀察圖象,點(diǎn)A的坐標(biāo)可以看作方程組   的解.
    16 .y+2與x+1成正比例,且當(dāng)x=1時,y=4,則當(dāng)x=2時,y= _________ .
    17.如圖,點(diǎn)D是△ABC的邊BC上任意一點(diǎn),點(diǎn)E、F分別是線段AD、CE的中點(diǎn),且△ABC的面積為16cm2,則△BEF的面積:      cm2.
    18.某物流公司的快遞車和貨車同時從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達(dá)乙地后缷 完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時,兩車之間的距離y(千米)與貨車行駛時間x(小時)之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個結(jié)論:
    ①快遞車從甲地到乙地的速度為100千米/時;
    ②甲、乙兩地之間的距離為120千米;
    ③圖中點(diǎn)B的坐標(biāo)為(3 ,75);
    ④快遞車從乙地返回時的速度為90千米/時,
    以上4個結(jié)論正確的是     ?。?BR>    三.解答題(本大題共6小題,第19題8分,20題10分,21題10分,22題12分,23題12分,24題14分,共66分)
    19.如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
    (1)寫出點(diǎn)A、B的坐標(biāo):A(    ,   ?。?BR>    B(    ,     )
    (2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,則A′B′C′的三個頂點(diǎn)坐標(biāo)分別是A′(      ,      )、
    B′(      ,     ?。?、
    C′(      ,     ?。?)△ABC的面積為     ?。?BR>    20.已知直線y=kx+b經(jīng)過點(diǎn)A(5,0),B(1,4).
    (1)求直線AB的解析式;
    (2)若直線y=2x﹣4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);
    (3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集.
    21.如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數(shù).
    22.某商場計(jì)劃購進(jìn)A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進(jìn)價、售價如表所示:
    類型 價格 進(jìn)價(元/盞) 售價(元/盞)
    A型 30 45
    B型 50 70
    (1)設(shè)商場購進(jìn)A型節(jié)能臺燈為x盞,銷售完這批臺燈時可獲利為y元,求y關(guān)于x的函數(shù)解析式;
    (2)若商場規(guī)定B型臺燈的進(jìn)貨數(shù)量不超過A型臺 燈數(shù)量的3倍,應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元? 
    23.已知 :如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問題:
    (1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)     ?。?BR>    (2)在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.利用(1)的結(jié)論,試求∠P的度數(shù);
    (3)如果圖2中∠D和∠B為任意角時,其他條件不變,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系?并說明理由
    24.一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設(shè)慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖(1)所示,S 與x的函數(shù)關(guān)系圖象如圖(2)所示:
    (1)圖中的a=      ,b=     ?。?BR>    (2)求S關(guān)于x的函數(shù)關(guān)系式.
    (3)甲、乙兩地間依次有E、F兩個加油站,相距200km,若慢車進(jìn)入E站加油時,快車恰好進(jìn)入F站加油.求E加油站到甲地的距離.
    參考答案
    一CBCBD DCCBA 11 . X<3 12 . _1 13 . 2 14, 36 15
    16 7 17 . 4 18 (1)(3)(4)
    19(1)寫出點(diǎn)A、B的坐標(biāo):
    A( 2 , ﹣1?。( 4 , 3?。?--------------------------------2分
    (2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,則A′B′C′的三個頂點(diǎn)坐標(biāo)分別是A′( 0 , 0?。′( 2 , 4?。′( ﹣1 , 3?。?------------5分.(3)△ABC的面積為 5 ------------------8分.
    20 解:(1)∵直線y=kx+b經(jīng)過點(diǎn)A(5,0),B(1,4),
    ∴直線AB的解析式為:y=﹣x+5;------------4分(2)∵若直線y=2x﹣4與直線AB相交于點(diǎn)C,點(diǎn)C(3,2);------------8分(3)根據(jù)圖象可得x>3.--------------10分
    21 解答: 解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣(∠A+∠B),
    =180°﹣(30°+62°)=180°﹣92°=88°,∵CE平分∠ACB,
    ∴∠ECB=∠ACB= 44°,∵CD⊥AB于D,∴∠CDB=90°,
    ∴∠BCD =90°﹣∠B=90°﹣62°=28°,
    ∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,∵DF⊥CE于F,∴∠CFD=90°,
    ∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.------------------------------------------10分
    22 . 解:(1)y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,
    =﹣5x+2000----6分,
    (2)∵B型臺燈的進(jìn)貨數(shù)量不超過A型臺燈數(shù)量的3倍,
    ∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,
    ∴x=25時,y取得值為﹣5×25+2000=1875(元).-------------------------------12分
    23. 解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,
    在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(對頂角相等),
    ∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;-----------3分
    (2)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,
    ∴∠OCB﹣∠OAD=4°,∵AP、CP分別是∠DAB和∠BCD的角平分線,
    ∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,
    ∴∠P=∠DAM+∠ D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°-----7分;
    (3)根據(jù)“8字形”數(shù)量關(guān)系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
    所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,
    ∵AP、CP分別是∠DAB和∠BCD的角平分線,∴∠DAM=∠OAD,∠PCM=∠OCB,
    ∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.----------------------12分
    24 解:(1)由S與x之間的函數(shù)的圖象可知:當(dāng)位于C點(diǎn)時,兩車之間的距 離增加變緩,∴由此可以得到a=6,
    ∴快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,
    ∴b=600÷(100+60)=15/ 4-----------------------------------------------------4分
    (2)∵從函數(shù)的圖象上可以得到A、B、C、D點(diǎn)的坐標(biāo)分別為:(0,600)、(3.75,0)、(6,360)、(10,600),
    ∴設(shè)線段AB所在直線解析式為:S=kx+b,解得:k=﹣160,b=600,S=-160x+600
    設(shè)線段BC所在的直線的解析式為:S=kx+b,
    解得:k=160,b=﹣600,s=160x-600
    設(shè)直線CD的解析式為:S=kx+b,解得:k=60,b=0 ,s=60x-----------------------10分
    (3)當(dāng)兩車相遇前分別進(jìn)入兩個不同的加油站,
    此時:S=﹣160x+600=200,
    解得:x=2.5,
    當(dāng)兩車相遇后分別進(jìn)入兩個不同的加油站,
    此時:S=160x﹣600=200,
    解得:x=5,
    ∴當(dāng)x=2.5或5時,此時E加油站到甲地的距離為450km或300km.-----------14分