★這篇《六年級奧數題及答案:值》,是特地為大家整理的,希望對大家有所幫助!
自然數m除13511,13903和14589的余數都相同.則m的值是( )
答案與解析:
一個數除其他不同的數所得的余數相等,那么這個數一定能整除這些其他不同數的差,根據這個性質,解決這道題便迎刃而解了。
由于m除13511,13903和14589的余數都相同,所以m整除13903-13511= 392;m整除14589-14903= 686;m整除14589 -13511=1078。
所以,m一定是392、686、1078的公約教.要求m的值,就是求392,686,1078的公約數.
因為392=7 ²×2 ³,686=7 ³×2,1078=7 ²×2×13
所以(392,686,1078)= 7 ²×2=98
即m的值為98.
自然數m除13511,13903和14589的余數都相同.則m的值是( )
答案與解析:
一個數除其他不同的數所得的余數相等,那么這個數一定能整除這些其他不同數的差,根據這個性質,解決這道題便迎刃而解了。
由于m除13511,13903和14589的余數都相同,所以m整除13903-13511= 392;m整除14589-14903= 686;m整除14589 -13511=1078。
所以,m一定是392、686、1078的公約教.要求m的值,就是求392,686,1078的公約數.
因為392=7 ²×2 ³,686=7 ³×2,1078=7 ²×2×13
所以(392,686,1078)= 7 ²×2=98
即m的值為98.

