環(huán)保工程師復習資料:垂直軸定理

字號:

一個平面剛體薄板對于垂直它的平面的軸的轉(zhuǎn)動慣量,等于繞平面內(nèi)與垂直軸相交的任意兩正交軸的轉(zhuǎn)動慣量之和。
    表達式:Iz=Ix+Iy
    剛體對一軸的轉(zhuǎn)動慣量,可折算成質(zhì)量等于剛體質(zhì)量的單個質(zhì)點對該軸所形成的轉(zhuǎn)動慣量。由此折算所得的質(zhì)點到轉(zhuǎn)軸的距離,稱為剛體繞該軸的回轉(zhuǎn)半徑κ,其公式為I=MK^2,式中M為剛體質(zhì)量;I為轉(zhuǎn)動慣量。
    轉(zhuǎn)動慣量的量綱為L^2M,在SI單位制中,它的單位是kg·m^2.
    剛體繞某一點轉(zhuǎn)動的慣性由更普遍的慣量張量描述。慣量張量是二階對稱張量,它完整地刻畫出剛體繞通過該點任一軸的轉(zhuǎn)動慣量的大小。
    補充對轉(zhuǎn)動慣量的詳細解釋及其物理意義:
    先說轉(zhuǎn)動慣量的由來,先從動能說起大家都知道動能E=(1/2)mv^2,而且動能的實際物理意義是:物體相對某個系統(tǒng)(選定一個參考系)運動的實際能量,(P勢能實際意義則是物體相對某個系統(tǒng)運動的可能轉(zhuǎn)化為運動的實際能量的大?。?BR>    E=(1/2)mv^2(v^2為v的2次方)
    把v=wr代入上式(w是角速度,r是半徑,在這里對任何物體來說是把物體微分化分為無數(shù)個質(zhì)點,質(zhì)點與運動整體的重心的距離為r,而再把不同質(zhì)點積分化得到實際等效的r)
    得到E=(1/2)m(wr)^2
    由于某一個對象物體在運動當中的本身屬性m和r都是不變的,所以把關(guān)于m、r的變量用一個變量K代替, K=mr^2
    得到E=(1/2)Kw^2 K就是轉(zhuǎn)動慣量,分析實際情況中的作用相當于牛頓運動平動分析中的質(zhì)量的作用,都是一般不輕易變的量。
    這樣分析一個轉(zhuǎn)動問題就可以用能量的角度分析了,而不必拘泥于只從純運動角度分析轉(zhuǎn)動問題。
    變換一下公式角度分析轉(zhuǎn)動
    1、E=(1/2)Kw^2本身代表研究對象的運動能量
    2、之所以用E=(1/2)mv^2不好分析轉(zhuǎn)動物體的問題,是因為其中不包含轉(zhuǎn)動物體的任何轉(zhuǎn)動信息。
    3、E=(1/2)mv^2除了不包含轉(zhuǎn)動信息,而且還不包含體現(xiàn)局部運動的信息,因為里面的速度v只代表那個物體的質(zhì)心運動情況。
    4、E=(1/2)Kw^2之所以利于分析,是因為包含了一個物體的所有轉(zhuǎn)動信息,因為轉(zhuǎn)動慣量K=mr^2本身就是一種積分得到的數(shù),更細一些講就是綜合了轉(zhuǎn)動物體的轉(zhuǎn)動不變的信息的等效結(jié)果K=∑mr^2(這里的K和上樓的J一樣)
    所以,就是因為發(fā)現(xiàn)了轉(zhuǎn)動慣量,從能量的角度分析轉(zhuǎn)動問題,就有了價值。
    若剛體的質(zhì)量是連續(xù)分布的,則轉(zhuǎn)動慣量的計算公式可寫成K=∑mr^2=∫r^2dm=∫r^2σdV.