高二數(shù)學(xué)說課稿:雙曲線及其標(biāo)準(zhǔn)方程

字號(hào):


    以下是為大家整理的關(guān)于《高二數(shù)學(xué)說課稿:雙曲線及其標(biāo)準(zhǔn)方程》,供大家學(xué)習(xí)參考!
    一、 教材分析
    1、 教材地位
    本節(jié)課是新課程人教A版選修2-1 第2章 第三節(jié)第一課時(shí)。它是在學(xué)生學(xué)習(xí)了直線、圓和橢圓的基礎(chǔ)上進(jìn)一步研究學(xué)習(xí)的,也為后面的拋物線及其標(biāo)準(zhǔn)方程做鋪墊。
    2、教材作用(重要模型,數(shù)形結(jié)合)
    圓錐曲線是一個(gè)重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。同時(shí),圓錐曲線也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。
    3、設(shè)計(jì)理念:體現(xiàn)素質(zhì)教育的要求和新課程理念,融合"知識(shí)與技能"、"過程與方法"、"情感態(tài)度與價(jià)值觀"三維教學(xué)目標(biāo),注重學(xué)生學(xué)習(xí)過程的體驗(yàn),體現(xiàn)自主、合作、探究的學(xué)習(xí)方式;注重?cái)?shù)學(xué)基本能力的培養(yǎng)和基礎(chǔ)知識(shí)的掌握,又注重?cái)?shù)學(xué)思想與方法的教育,同時(shí)反映數(shù)學(xué)學(xué)科前沿以及與科學(xué)、技術(shù)、社會(huì)的聯(lián)系;教學(xué)過程中體現(xiàn)過程性評(píng)價(jià)對(duì)學(xué)生發(fā)展的作用,體現(xiàn)教師的有效指導(dǎo)作用。
    二、目標(biāo)分析
    1.知識(shí)與技能目標(biāo)
    ①理解雙曲線的定義
    ②能根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程。
    ③進(jìn)一步感受曲線方程的概念,了解建立曲線方程的基本方法。
    2.過程與方法目標(biāo)
    ①提高運(yùn)用坐標(biāo)法解決幾何問題的能力及運(yùn)算能力。
    ②培養(yǎng)學(xué)生利用數(shù)形結(jié)合這一思想方法研究問題。
    ③培養(yǎng)學(xué)生的類比推理能力、觀察能力、歸納能力、探索發(fā)現(xiàn)能力。
    3.情感、態(tài)度與價(jià)值觀目標(biāo)
    ①親身經(jīng)歷雙曲線及其標(biāo)準(zhǔn)方程的獲得過程,感受數(shù)學(xué)美的熏陶。
    ②通過主動(dòng)探索,合作交流,感受探索的樂趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。
    ③養(yǎng)成實(shí)事求是的科學(xué)態(tài)度和契而不舍的鉆研精神,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度。
    4、重點(diǎn)難點(diǎn)
    基于以上分析,我將本課的教學(xué)重點(diǎn)、難點(diǎn)確定為:
    ①重點(diǎn):感受建立曲線方程的基本過程,掌握雙曲線的標(biāo)準(zhǔn)方程及其推導(dǎo)方法。
    ②難點(diǎn):雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)。
    三、學(xué)情分析:
    1、知識(shí)方面:學(xué)生已經(jīng)學(xué)習(xí)直線、圓和橢圓,基本掌握了求曲線方程的一般方法,能對(duì)含有兩個(gè)根式的方程進(jìn)行化簡(jiǎn),對(duì)數(shù)形結(jié)合、類比推理的思想方法有一定的體會(huì)。
    2、能力方面:學(xué)生對(duì)基本的計(jì)算機(jī)操作較為熟練、有一定的學(xué)習(xí)基礎(chǔ)和分析問題、解決問題的能力,且有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力。
    四、教法學(xué)法分析
    在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。探究性學(xué)習(xí)就是充分利用了青少年學(xué)生富有創(chuàng)造性和好奇心,敢想敢為,對(duì)新事物具有濃厚的興趣的特點(diǎn)。讓學(xué)生根據(jù)教學(xué)目標(biāo)的要求和題目中的已知條件,自覺主動(dòng)地創(chuàng)造性地去分析問題、討論問題、解決問題。
    啟發(fā)式教學(xué)法就是以啟發(fā)、引導(dǎo)為主,采用設(shè)疑的形式,逐步讓學(xué)生進(jìn)行探究性的學(xué)習(xí)。通過創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷“觀察——猜想——證明——應(yīng)用”的過程,發(fā)現(xiàn)新的知識(shí),把學(xué)生的潛意識(shí)狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識(shí)。又通過實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識(shí)得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力和增強(qiáng)了研究探索的綜合素質(zhì)。
    新課程倡導(dǎo)“自主、合作、探究”學(xué)習(xí),引導(dǎo)學(xué)生自主探索、發(fā)現(xiàn)知識(shí);通過設(shè)計(jì)問題,以支撐學(xué)生積極的學(xué)習(xí)活動(dòng),幫助他們成為學(xué)習(xí)活動(dòng)的主體;創(chuàng)設(shè)真實(shí)的問題情境,誘發(fā)他們進(jìn)行探索與解決問題。并注意培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力。
    五、說教學(xué)過程
    教學(xué)環(huán)節(jié) 教學(xué)過程 設(shè)計(jì)意圖
    復(fù)習(xí)引入
    這一環(huán)節(jié)既可以使學(xué)生溫故而知新,也為后面的學(xué)習(xí)做好鋪墊。
    雙曲線的定義 通過課本的實(shí)驗(yàn)探究(以動(dòng)畫形式展示),引入雙曲線的定義:平面內(nèi)與兩定點(diǎn) 的距離的差的絕對(duì)值等于常數(shù) (小于 )的點(diǎn)的集合。
    符號(hào)表示: ( )
    其中:焦點(diǎn)—— ;焦距—— (設(shè)為 );
    設(shè)常數(shù)
    思考:1、去掉“絕對(duì)值”后,點(diǎn)M的軌跡為什么?(用動(dòng)畫展示)
    2、若常數(shù) ,則點(diǎn)M的軌跡是什么?(用動(dòng)畫展示) 1、讓學(xué)生在具體的問題情境中經(jīng)歷知識(shí)的形成和發(fā)展,將實(shí)際問題抽象為數(shù)學(xué)模型,并進(jìn)行解釋與運(yùn)用的過程。課堂教學(xué)的關(guān)鍵是要激發(fā)學(xué)生的求知欲,讓學(xué)生主動(dòng)參與,發(fā)現(xiàn)學(xué)習(xí)。
    2、通過設(shè)問,把學(xué)生逐步引入問題情景中,通過師生互動(dòng)等形式,讓學(xué)生在問題中學(xué)會(huì)思考,學(xué)會(huì)學(xué)習(xí),終使問題得以解決。同時(shí),問題具有一定的梯度,對(duì)學(xué)生的思考有一定的引導(dǎo)和啟發(fā)作用。
    雙曲線的標(biāo)準(zhǔn)方程 1、復(fù)習(xí)求曲線方程的一般步驟:建系、設(shè)點(diǎn)——列式——化簡(jiǎn)——檢驗(yàn)
    2、推導(dǎo)焦點(diǎn)在x軸和y軸上的雙曲線的標(biāo)準(zhǔn)方程
    學(xué)生分成兩大組,一組推導(dǎo)焦點(diǎn)在x軸上的雙曲線的標(biāo)準(zhǔn)方程,另一組推導(dǎo)焦點(diǎn)在y軸上的雙曲線的標(biāo)準(zhǔn)方程,后交換結(jié)論。
    3、 比較兩種標(biāo)準(zhǔn)方程。
    兩點(diǎn)說明:① 關(guān)系: ②如何判斷焦點(diǎn)的位置:看 前的系數(shù)的正負(fù),哪一項(xiàng)為正,則在相應(yīng)的軸上。(口訣:焦點(diǎn)看正負(fù)!)
    1、在比較如何化簡(jiǎn)方程簡(jiǎn)單后,我選擇放手讓學(xué)生化簡(jiǎn),讓學(xué)生體驗(yàn)化簡(jiǎn)方程的艱辛,經(jīng)受鍛煉,嘗試成功,提高學(xué)生參與教學(xué)過程的積極性。
    2、在得到雙曲線的標(biāo)準(zhǔn)方程之后,我和學(xué)生共同總結(jié)推導(dǎo)雙曲線標(biāo)準(zhǔn)方程的步驟,其目的是進(jìn)一步強(qiáng)化求曲線方程的一般步驟,同時(shí)也讓學(xué)生享受成功的喜悅。
    3、體現(xiàn)類比推理的思想.培養(yǎng)學(xué)生歸納總結(jié)和類比推理的能力.
    4、在推導(dǎo)過程中我令 ,一是為了美化方程,使方程具有對(duì)稱性,二是為后面幾何性質(zhì)的學(xué)習(xí)做鋪墊。