考研數(shù)學(xué)大綱及解析:高等數(shù)學(xué)(微積分)五

字號(hào):

2014考研報(bào)名時(shí)間 | 2014考研報(bào)名流程 | 2014考研考試時(shí)間安排
    2014考研考試大綱 | 2014研究生招生簡(jiǎn)章 | 歷年考研試題及答案
    五、多元函數(shù)微分學(xué)
    考試內(nèi)容(適用于數(shù)學(xué)一)
    多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導(dǎo)數(shù)和全微分,全微分存在的必要條件和充分條件,多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度,空間曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)的二階泰勒公式,多元函數(shù)的極值和條件極值,多元函數(shù)的值、最小值及其簡(jiǎn)單應(yīng)用.
    考試內(nèi)容(適用于數(shù)學(xué)二)
    多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導(dǎo)數(shù)和全微分,多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),多元函數(shù)的極值和條件極值、值和最小值.
    考試內(nèi)容(適用于數(shù)學(xué)三)
    多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算,多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法,二階偏導(dǎo)數(shù),全微分,多元函數(shù)的極值和條件極值、值和最小值.
    考試要求(適用于數(shù)學(xué)一)
    1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義.
    2.了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì).
    3.理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會(huì)求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.
    4.理解方向?qū)?shù)與梯度的概念,并掌握其計(jì)算方法.
    5.掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法.
    6.了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).
    7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會(huì)求它們的方程.
    8.了解二元函數(shù)的二階泰勒公式.
    9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問題.
    考試要求(適用于數(shù)學(xué)二)
    1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
    2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).
    3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).
    4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問題.
    考試要求(適用于數(shù)學(xué)三)
    1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
    2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).
    3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).
    4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的值和最小值,并會(huì)解決簡(jiǎn)單的應(yīng)用問題.
    真題舉例
    【例1】(2009年數(shù)一):求二元函數(shù)f(x,y)=x2(2+y2)+ylny的極值.
    參考答案:-1e.
    【例2】(2009年數(shù)二):設(shè)z=f(x+y,x-y,xy),其中f具有二階連續(xù)偏導(dǎo)數(shù),求dz與2zxy.
    參考答案:
    dz=(f′1+f′2+yf′3)dx+(f′1-f′2+xf′3)dy,
    2zxy=f ″11+(x+y)f ″13-f ″22+(x-y)f ″23+xyf ″33+f′3.
    【例3】(2009年數(shù)三):設(shè)z=(x+ey)x,則zx (1,0)=.
    參考答案:1+2ln2.