考研高數(shù)知識(shí)點(diǎn)提示之一元函數(shù)微分學(xué)

字號(hào):

這篇關(guān)于考研高數(shù)知識(shí)點(diǎn)提示之一元函數(shù)微分學(xué),是特地為大家整理的,希望對(duì)大家有所幫助!
    以下整理了一元函數(shù)微分學(xué)考試重點(diǎn),建議同學(xué)們好好復(fù)習(xí),預(yù)祝同學(xué)們考研成功過!
    一元函數(shù)微分學(xué)考試內(nèi)容:
    導(dǎo)數(shù)和微分的概念;導(dǎo)數(shù)的幾何意義和物理意義;函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系;平面曲線的切線和法線;導(dǎo)數(shù)和微分的四則運(yùn)算;基本初等函數(shù)的導(dǎo)數(shù);復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法;高階導(dǎo)數(shù);一階微分形式的不變性微分中值定理;洛必達(dá)(L’Hospital)法則;函數(shù)單調(diào)性的判別;函數(shù)的極值;函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線;函數(shù)圖形的描繪;函數(shù)的值與最小值;弧微分;曲率的概念;曲率圓與曲率半徑。
    考試重點(diǎn):
    1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
    2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分。
    3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。
    4.會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。
    5.理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用柯西(Cauchy)中值定理。
    6.掌握用洛必達(dá)法則求未定式極限的方法。
    7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)值和最小值的求法及其應(yīng)用。
    8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)。當(dāng)時(shí),的圖形是凹的;當(dāng)時(shí),的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形。
    9.了解曲率、曲率圓與曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑。