這篇關(guān)于《六年級奧數(shù)題及答案:抽屜原理》,是特地為大家整理的,希望對大家有所幫助!
有5個小朋友,每人都從裝有許多黑白圍棋子的布袋中任意摸出3枚棋子.請你證明,這5個人中至少有兩個小朋友摸出的棋子的顏色的配組是一樣的。
答案與解析:
首先要確定3枚棋子的顏色可以有多少種不同的情況,可以有:3黑,2黑1白,1黑2白,3白共4種配組情況,看作4個抽屜.把每人的3枚棋作為一組當(dāng)作一個蘋果,因此共有5個蘋果。把每人所拿3枚棋子按其顏色配組情況放入相應(yīng)的抽屜。由于有5個蘋果,比抽屜個數(shù)多,所以根據(jù)抽屜原理,至少有兩個蘋果在同一個抽屜里,也就是他們所拿棋子的顏色配組是一樣的。
有5個小朋友,每人都從裝有許多黑白圍棋子的布袋中任意摸出3枚棋子.請你證明,這5個人中至少有兩個小朋友摸出的棋子的顏色的配組是一樣的。
答案與解析:
首先要確定3枚棋子的顏色可以有多少種不同的情況,可以有:3黑,2黑1白,1黑2白,3白共4種配組情況,看作4個抽屜.把每人的3枚棋作為一組當(dāng)作一個蘋果,因此共有5個蘋果。把每人所拿3枚棋子按其顏色配組情況放入相應(yīng)的抽屜。由于有5個蘋果,比抽屜個數(shù)多,所以根據(jù)抽屜原理,至少有兩個蘋果在同一個抽屜里,也就是他們所拿棋子的顏色配組是一樣的。