1.難度:★★★
如圖:將一張紙作如下操作,一、用橫線將紙劃為相等的兩塊,二、用豎線將下邊的區(qū)塊 劃為相等的兩塊,三、用橫線將最右下方的區(qū)塊分為相等的兩塊,四、用豎線將最右下方的區(qū)塊劃為相等的兩塊……,如此進行8步操作,問:如果用四種顏色對這 一圖形進行染色,要求相鄰區(qū)塊顏色不同,應該有多少種不同的染色方法?
【解析】對這張紙的操作一共進行了8次,每次操作都增加了一個區(qū)塊,所以8次操作后一共有9個區(qū)塊,我們對這張紙,進行染色就需要9個步驟,從的區(qū)塊從大到小開始染色,每個步驟地染色方法有:4、3、2、2、2……,所以一共有: 種。
2.難度:★★★
某沿海城市管轄7個縣,這7個縣的位置如右圖.現(xiàn)用紅、黑、綠、藍、紫五種顏色給右圖染色,要求任意相鄰的兩個縣染不同顏色,共有多少種不同的染色方法?
a)為了便于分析,把地圖上的7個縣分別編號為A 、B 、C 、D 、 E、 F、G (如左下圖)。
為了便于觀察,在保持相鄰關(guān)系不變的情況下可以把左圖改畫成右圖。那么,為了完成地圖染色這件工作需要多少步呢?
由于有7個區(qū)域,我們不妨按 A、B 、C 、D 、E 、F 、G 的順序,用紅、黑、綠、藍、紫五種顏色依次分7步來完成染色任務.
第1步:先染區(qū)域 A,有5種顏色可供選擇;
第2步:再染區(qū)域B ,由于 B不能與A 同色,所以區(qū)域 B的染色方式有4種;
第3步:染區(qū)域 C,由于C 不能與B、A 同色,所以區(qū)域C 的染色方式有3種;
第4步:染區(qū)域 D,由于 D不能與 C、A 同色,所以區(qū)域 D的染色方式有3種;
第5步:染區(qū)域 E,由于 E不能與 D、A 同色,所以區(qū)域 E的染色方式有3種;
第6步:染區(qū)域F ,由于 F不能與 E、A 同色,所以區(qū)域F 的染色方式有3種;
第7步:染區(qū)域 G,由于 G不能與C 、D 同色,所以區(qū)域G 的染色方式有3種.
根據(jù)分步計數(shù)的乘法原理,共有 種不同的染色方法.

