2012年高考數(shù)學(xué)復(fù)習(xí)技巧什么是基本的、必須要掌握的呢?有一個(gè)比較簡(jiǎn)單的方法來(lái)確認(rèn),就是看教材的目錄。比如從不等式這一章教材目錄上看,不等式的性質(zhì)是基礎(chǔ);不等式的解法是重點(diǎn)(一元二次不等式的解法則是重中之重);對(duì)基本不等式則需思考:何為“基本”?在數(shù)學(xué)中如何體現(xiàn)出來(lái);而不等式的證明僅是供學(xué)有余力的同學(xué)選用,這樣在復(fù)習(xí)時(shí)方向就明確了,有利于合理分配時(shí)間與精力。我們還可以將上述看目錄的方法延伸到整個(gè)教材,來(lái)看章節(jié)之間的聯(lián)系,體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系。
高考數(shù)學(xué)復(fù)習(xí)技巧追根溯源,梳理知識(shí)我們可以從溯源開(kāi)始,即知識(shí)是如何發(fā)現(xiàn)、發(fā)生、發(fā)展與其他知識(shí)之間的關(guān)系如何。比較準(zhǔn)則是不等式知識(shí)的源頭,很多問(wèn)題最后都會(huì)歸于比較準(zhǔn)則。如下例:
例1:比較 |a+b|/1+|a+b|與|a|/1+|a|+ |b|/1+|b|的大小
高考數(shù)學(xué)復(fù)習(xí)技巧由比較準(zhǔn)則可知:a>b,c>0→ac>bc(不等式性質(zhì)3),在上述基礎(chǔ)上可知:若a>b>0,m>0→am>bm→ab+am>ab+bm→b+m/a+m>b/a(兩邊同時(shí)乘1/a(a+m))因?yàn)椋簗a+b|≤|a|+|b|→|a+b|/1+|a+b| ≤|a|+|b|/1+|a|+|b|=|a|/1+|a|+|b| + |b|/1+|a|+|b|≤|a|/1+|a| + |b|/1+|b|
因此|a+b|/1+|a+b|≤|a|/1+|a| + |b|/1+|b|
高考數(shù)學(xué)復(fù)習(xí)技巧多角度審視,追根溯源是縱向的梳理知識(shí)發(fā)展的邏輯過(guò)程,多角度審視則是橫向聯(lián)系努力聯(lián)想,使知識(shí)間互相聯(lián)系、互相支持,對(duì)加深知識(shí)的理解很有好處。如:例2:已知:a,b∈R+,ab=a+b+3,求ab的取值范圍??梢詮乃膫€(gè)視角解決問(wèn)題。視角一:從基本不等式入手;視角二:構(gòu)造定值運(yùn)用基本不等式;視角三:構(gòu)造方程;視角四:轉(zhuǎn)化為函數(shù)問(wèn)題。不難發(fā)現(xiàn),求變量范圍問(wèn)題基本的途徑是通過(guò)不等式(基本不等式或解關(guān)于此變量的不等式)或運(yùn)用函數(shù)的單調(diào)性。從而我們找到了解決范圍問(wèn)題通性、通法。
高考數(shù)學(xué)復(fù)習(xí)技巧管理好自己的心理健康,對(duì)生活、學(xué)習(xí)充滿(mǎn)信心、積極樂(lè)觀面對(duì)各種挑戰(zhàn)。在數(shù)學(xué)學(xué)習(xí)上不畏難、不怕煩,敢于計(jì)算、善于思索。如有同學(xué)一算就錯(cuò),特別怕計(jì)算總想走捷徑,時(shí)間長(zhǎng)了面對(duì)計(jì)算問(wèn)題就有了心理陰影。這些同學(xué)應(yīng)該通過(guò)有意識(shí)地仔細(xì)耐心地計(jì)算逐漸提高計(jì)算能力,建立起對(duì)計(jì)算
高考數(shù)學(xué)復(fù)習(xí)技巧追根溯源,梳理知識(shí)我們可以從溯源開(kāi)始,即知識(shí)是如何發(fā)現(xiàn)、發(fā)生、發(fā)展與其他知識(shí)之間的關(guān)系如何。比較準(zhǔn)則是不等式知識(shí)的源頭,很多問(wèn)題最后都會(huì)歸于比較準(zhǔn)則。如下例:
例1:比較 |a+b|/1+|a+b|與|a|/1+|a|+ |b|/1+|b|的大小
高考數(shù)學(xué)復(fù)習(xí)技巧由比較準(zhǔn)則可知:a>b,c>0→ac>bc(不等式性質(zhì)3),在上述基礎(chǔ)上可知:若a>b>0,m>0→am>bm→ab+am>ab+bm→b+m/a+m>b/a(兩邊同時(shí)乘1/a(a+m))因?yàn)椋簗a+b|≤|a|+|b|→|a+b|/1+|a+b| ≤|a|+|b|/1+|a|+|b|=|a|/1+|a|+|b| + |b|/1+|a|+|b|≤|a|/1+|a| + |b|/1+|b|
因此|a+b|/1+|a+b|≤|a|/1+|a| + |b|/1+|b|
高考數(shù)學(xué)復(fù)習(xí)技巧多角度審視,追根溯源是縱向的梳理知識(shí)發(fā)展的邏輯過(guò)程,多角度審視則是橫向聯(lián)系努力聯(lián)想,使知識(shí)間互相聯(lián)系、互相支持,對(duì)加深知識(shí)的理解很有好處。如:例2:已知:a,b∈R+,ab=a+b+3,求ab的取值范圍??梢詮乃膫€(gè)視角解決問(wèn)題。視角一:從基本不等式入手;視角二:構(gòu)造定值運(yùn)用基本不等式;視角三:構(gòu)造方程;視角四:轉(zhuǎn)化為函數(shù)問(wèn)題。不難發(fā)現(xiàn),求變量范圍問(wèn)題基本的途徑是通過(guò)不等式(基本不等式或解關(guān)于此變量的不等式)或運(yùn)用函數(shù)的單調(diào)性。從而我們找到了解決范圍問(wèn)題通性、通法。
高考數(shù)學(xué)復(fù)習(xí)技巧管理好自己的心理健康,對(duì)生活、學(xué)習(xí)充滿(mǎn)信心、積極樂(lè)觀面對(duì)各種挑戰(zhàn)。在數(shù)學(xué)學(xué)習(xí)上不畏難、不怕煩,敢于計(jì)算、善于思索。如有同學(xué)一算就錯(cuò),特別怕計(jì)算總想走捷徑,時(shí)間長(zhǎng)了面對(duì)計(jì)算問(wèn)題就有了心理陰影。這些同學(xué)應(yīng)該通過(guò)有意識(shí)地仔細(xì)耐心地計(jì)算逐漸提高計(jì)算能力,建立起對(duì)計(jì)算