考研數(shù)學(xué) 線代概率首輪復(fù)習(xí)要點(diǎn)

字號(hào):

線性代數(shù)線性代數(shù)的重要概念包括以下內(nèi)容:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(jià)(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對(duì)角化。線性代數(shù)的內(nèi)容縱橫交錯(cuò),環(huán)環(huán)相扣,知識(shí)點(diǎn)之間相互滲透很深,因此不僅出題角度多,而且解題方法也是靈活多變,需要在夯實(shí)基礎(chǔ)的前提下大量練習(xí),歸納總結(jié)。
    重磅閱讀 考研網(wǎng)校在線考研院校搜索系統(tǒng)
    概率論與數(shù)理統(tǒng)計(jì)概率論與數(shù)理統(tǒng)計(jì)是考研數(shù)學(xué)中的難點(diǎn),考生得分率普遍較低。與微積分和線性代數(shù)不同的是,概率論與數(shù)理統(tǒng)計(jì)并不強(qiáng)調(diào)解題方法,也很少涉及解題技巧,而非常強(qiáng)調(diào)對(duì)基本概念、定理、公式的深入理解。其考點(diǎn)如下:
    1)隨機(jī)事件和概率:包括樣本空間與隨機(jī)事件;概率的定義與性質(zhì)(含古典概型、幾何概型、加法公式);條件概率與概率的乘法公式;事件之間的關(guān)系與運(yùn)算(含事件的獨(dú)立性);全概公式與貝葉斯公式;伯努利概型。
    2)隨機(jī)變量及其概率分布:包括隨機(jī)變量的概念及分類;離散型隨機(jī)變量概率分布及其性質(zhì);連續(xù)型隨機(jī)變量概率密度及其性質(zhì);隨機(jī)變量分布函數(shù)及其性質(zhì);常見分布;隨機(jī)變量函數(shù)的分布。
    3)二維隨機(jī)變量及其概率分布:包括多維隨機(jī)變量的概念及分類;二維離散型隨機(jī)變量聯(lián)合概率分布及其性質(zhì);二維連續(xù)型隨機(jī)變量聯(lián)合概率密度及其性質(zhì);二維隨機(jī)變量聯(lián)合分布函數(shù)及其性質(zhì);二維隨機(jī)變量的邊緣分布和條件分布;隨機(jī)變量的獨(dú)立性;兩個(gè)隨機(jī)變量的簡單函數(shù)的分布。
    4)隨機(jī)變量的數(shù)字特征:隨機(jī)變量的數(shù)字期望的概念與性質(zhì);隨機(jī)變量的方差的概念與性質(zhì);常見分布的數(shù)字期望與方差;隨機(jī)變量矩、協(xié)方差和相關(guān)系數(shù)。
    5)大數(shù)定律和中心極限定理,以及切比雪夫不等式。