因式分解初一題目及答案100道題模板

字號:

    在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。相信許多人會覺得范文很難寫?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
    因式分解初一題目及答案100道題篇一
    修改病句練習(xí)題及答案
    推薦度:
    初一配套應(yīng)用題及答案
    推薦度:
    初一數(shù)學(xué)教學(xué)反思
    推薦度:
    初一數(shù)學(xué)教師工作總結(jié)
    推薦度:
    初一數(shù)學(xué)有理數(shù)的乘法教案
    推薦度:
    相關(guān)推薦
    1.2x4y2-4x3y2+10xy4。
    2. 5xn+1-15xn+60xn-1。
    4. (a+b)2x2-2(a2-b2)xy+(a-b)2y2
    5. x4-1
    6.-a2-b2+2ab+4分解因式。
    10.a2+b2+c2+2ab+2bc+2ac
    11.x2-2x-8
    12.3x2+5x-2
    13. (x+1)(x+2)(x+3)(x+4)+1
    14. (x2+3x+2)(x2+7x+12)-120.
    15.把多項(xiàng)式3x2+11x+10分解因式。
    16.把多項(xiàng)式5x2―6xy―8y2分解因式。
    17.求證:32000-431999+1031998能被7整除。
    18.設(shè) 為正整數(shù),且64n-7n能被57整除,證明: 是57的倍數(shù).
    19.求證:無論x、y為何值, 的值恒為正。
    20.已知x2+y2-4x+6y+13=0,求x,y的值。
    21.已知a,b,c滿足a-b=8,ab+c2+16=0,求a+b+c的值 .
    22.已知x2+3x+6是多項(xiàng)式x4-6x3+mx2+nx+36的一個(gè)因式,試確定m,n的值,并求出它的其它因式。
    因式分解精選練習(xí)答案
    一分解因式
    1. 解:原式=2xy2x3-2xy22x2+2xy25y2
    =2xy2 (x3-2x2+5y2)。
    提示:先確定公因式,找各項(xiàng)系數(shù)的最大公約數(shù)2;各項(xiàng)相同字母的最低次冪xy2,即公因式2xy2,再把各項(xiàng)的公因式提到括號外面,把多項(xiàng)式寫成因式的積。
    2. 提示:在公因式中相同字母x的最低次冪是xn-1,提公因式時(shí)xn+1提取xn-1后為x2,xn提取xn--1后為x。
    解:原式=5 xn--1x2-5xn--13x+5xn--112
    =5 xn--1 (x2-3x+12)
    3.解:原式=3a(b-1)(1-8a3)
    =3a(b-1)(1-2a)(1+2a+4a2)
    提示:立方差公式:a3-b3=(a-b)( a2+ab+b2)
    立方和公式:a3+ b3=(a+b)( a2-ab+b2)
    所以,1-8 a3=(1-2a)(1+2a+4a2)
    4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2
    =(ax+bx-ay+by)2[
    提示:將(a+b)x和(a-b)y視為 一個(gè)整體。
    5.解:原式=( x2+1)( x2-1)
    =( x2+1)(x+1)(x-1)
    提示:許多同學(xué)分解到(x2+1)( x2-1)就不再分解了,因式分解必須分解到不能再分解為止。
    6.解:原式=-(a2-2ab+b2-4)
    =-(a-b+2)(a-b-2)
    提示:如果多項(xiàng)式的第一項(xiàng)是負(fù)的.,一般要提出負(fù)號,使括號內(nèi)第一項(xiàng)系數(shù)是正的。但也不能見負(fù)號就先提,要對全題進(jìn)行分析.防止出現(xiàn)諸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的錯誤。
    7. 解: 原式= x4-x3-(x-1)
    = x3(x-1)-(x-1)
    =(x-1)(x3-1)
    =(x-1)2(x2+x+1)
    提示:通常四項(xiàng)或者以上的因式分解,分組分的要合適,否則無法分解。另外,本題的結(jié)果不可寫成(x-1)(x-1)( x2+x+1),能寫成乘方的形式的,一定要寫成乘方的形式。*使用了立方差公式,x3-1=(x-1)( x2+x+1)
    8. 解:原式=y2[(x+y)2-12(x+y)+36]-y4
    =y2(x+y-6)2-y4
    =y2[(x+y-6)2-y2]
    =y2(x+y-6+y)(x+y-6-y)
    = y2(x+2y-6)(x-6)
    9. 解:原式= (x+y)2(x2-12x+36)-(x+y)4
    =(x+y)2[(x-6)2-(x+y)2]
    =(x+y)2(x-6+x+y)(x-6-x-y)
    =(x+y)2(2x+y-6)(-6-y)
    = - (x+y)2(2x+y-6)(y+6)
    10.解:原式=(a2+b2 +2ab)+2bc+2ac+c2
    =(a+b)2+2(a+b)c+c2
    =(a+b+c)2
    提示:*將(a+b)視為 1個(gè)整體。
    11.解:原式=x2-2x+1-1-8 *
    =(x-1)2-32
    =(x-1+3)(x-1-3)
    = (x+2)(x-4)
    提示:本題用了配方法,將x2-2x加上1個(gè)1又減了一個(gè)1,從而構(gòu)成完全平方式。
    12.解:原式=3(x2+ x)-2
    =3(x2+ x+ - )-2 *
    =3(x+ )2-3 -2
    =3(x+ )2-
    =3[(x+ )2- ]
    =3(x+ + )(x+ - )
    =3(x+2)(x- )
    =(x+2)(3x-1)
    提示:*這步很重要,根據(jù)完全平方式的結(jié)構(gòu)配出來的。對于任意二次三項(xiàng)式ax2+bx+c(a0)可配成a(x+ )2+ .
    13.解:原式=[(x+1)(x+4)][(x+2)(x+3)]+1
    =( x2+5x+4)( x2+5x+6)+1
    令x2+5x=a,則 原式=(a+4)(a+6)+1
    =a2+10a+25
    =(a+5)2
    =(x2+5x+5)
    提示:把x2+5x看成一個(gè)整體。
    14. 解 原式=(x+2)(x+1)(x+4)(x+3)-120
    =(x+2)(x+3)(x+1)(x+4)-120
    =( x2+5x+6)( x2+5x+4)-120
    令 x2+5x=m, 代入上式,得
    原式=(m+6)(m+4)-120=m2+10m-96
    =(m+16)(m-6)=( x2+5x+16)( x2+5x-6)=( x2+5x+16)(x+6)(x-1)
    提示:把x2+5x看成一個(gè)整體。
    15.解:原式=(x+2)(3x+5)
    提示:把二次項(xiàng)3x2分解成x與3x(二次項(xiàng)一般都只分解成正因數(shù)),常數(shù)項(xiàng)10可分成110=-1(-10)=25=-2(-5),其中只有11x=x5+3x2。
    說明:十字相乘法是二次三項(xiàng)式分解因式的一種常用方法,特別是當(dāng)二次項(xiàng)的系數(shù)不是1的時(shí)候,給我們的分解帶來麻煩,這里主要就是講講這類情況。分解時(shí),把二次項(xiàng)、常數(shù)項(xiàng)分別分解成兩個(gè)數(shù)的積,并使它們交叉相乘的積的各等于一次項(xiàng)。需要注意的是:⑴如果常數(shù)項(xiàng)是正數(shù),則應(yīng)把它分解成兩個(gè)同號的因數(shù),若一次項(xiàng)是正,則同正號;若一次項(xiàng)是負(fù),則應(yīng)同負(fù)號。⑵如果常數(shù)項(xiàng)是負(fù)數(shù),則應(yīng)把它分解成兩個(gè)異號的因數(shù),交叉相乘所得的積中,絕對值大的與一次項(xiàng)的符號相同(若一次項(xiàng)是正,則交叉相乘所得的積中,絕對值大的就是正號;若一次項(xiàng)是負(fù),則交叉相乘所得的積中,絕對值大的就是負(fù)號)。
    ax c
    二次項(xiàng) 常數(shù)項(xiàng)
    bx d
    adx+bcx=(ad+bc)x 一次項(xiàng)
    ab x2+(ad+bc)x+cd=(ax+c)(bx+d)
    16. 解:原式=(x-2y)(5x+4y)
    x -2y
    5x 4y
    -6xy
    二證明題
    17.證明: 原式=31998(32-43+10)= 319987,
    能被7整除。
    18.證明:
    =8(82n-7n)+87n+7n+2
    =8(82n-7n)+7n(49+8)
    =8(82n-7n)+57 7n
    是57的倍數(shù).
    19.證明:
    =4 x2-12x+9+9 y2+30y+25+1
    =(2x-3) 2+(3y+5) 2+1
    1.
    20.解:∵x2+y2-4x+6y+13=0
    x2-4x+4+y2+6y+9=0
    (x-2) 2+(y+3) 2=0
    (x-2) 20, (y+3) 20.
    x-2=0且y+3=0
    x=2,y=-3
    三 求值。
    21.解:∵a-b=8
    a=8+b
    又ab+c2+16=0
    即(b+8)b+c2+16=0
    即(b+4)2+c2=0
    又因?yàn)椋?b+4) 20,c20,
    b+4=0,c=0,
    b=-4,c=0,a=b+8=4
    a+b+c=0.
    22. 解:設(shè)它的另一個(gè)因式是x2+px+6,則
    x4-6x3+mx2+nx+36
    =(x2+px+6)(x2+3x+6)
    =x4+(p+3)x3+(3p+12)x2+(6p+18)x+36
    s("content_relate");
    【因式分解初一數(shù)學(xué)習(xí)題及答案】相關(guān)文章:
    關(guān)于初中數(shù)學(xué)之因式分解的練習(xí)題及答案
    04-02
    初中數(shù)學(xué)因式分解習(xí)題摘選
    02-18
    數(shù)學(xué)因式分解練習(xí)題
    07-05
    初中數(shù)學(xué)題目精選之因式分解同步練習(xí)題及答案
    01-27
    初一數(shù)學(xué)練習(xí)題答案
    02-09
    初一數(shù)學(xué)練習(xí)題及答案
    04-02
    初一數(shù)學(xué)代數(shù)練習(xí)題及答案
    06-23
    初一數(shù)學(xué)關(guān)于正數(shù)與負(fù)數(shù)的習(xí)題及答案
    01-19
    初一數(shù)學(xué)同步練習(xí)題與答案
    08-14