量子力學是研究微觀粒子的運動規(guī)律的物理學分支學科,它主要研究原子、分子、凝聚態(tài)物質,以及原子核和基本粒子的結構、性質的基礎理論,它與相對論一起構成了現代物理學的理論基礎。量子力學不僅是近代物理學的基礎理論之一,而且在化學等有關學科和許多近代技術中也得到了廣泛的應用。
量子力學的發(fā)展簡史
量子力學是在舊量子論的基礎上發(fā)展起來的。舊量子論包括普朗克的量子假說、愛因斯坦的光量子理論和玻爾的原子理論。
1900年,普朗克提出輻射量子假說,假定電磁場和物質交換能量是以間斷的形式(能量子)實現的,能量子的大小同輻射頻率成正比,比例常數稱為普朗克常數,從而得出黑體輻射能量分布公式,成功地解釋了黑體輻射現象。
1905年,愛因斯坦引進光量子(光子)的概念,并給出了光子的能量、動量與輻射的頻率和波長的關系,成功地解釋了光電效應。其后,他又提出固體的振動能量也是量子化的,從而解釋了低溫下固體比熱問題。
1913年,玻爾在盧瑟福有核原子模型的基礎上建立起原子的量子理論。按照這個理論,原子中的電子只能在分立的軌道上運動,原子具有確定的能量,它所處的這種狀態(tài)叫“定態(tài)”,而且原子只有從一個定態(tài)到另一個定態(tài),才能吸收或輻射能量。這個理論雖然有許多成功之處,但對于進一步解釋實驗現象還有許多困難。
在人們認識到光具有波動和微粒的二象性之后,為了解釋一些經典理論無法解釋的現象,法國物理學家德布羅意于1923年提出微觀粒子具有波粒二象性的假說。德布羅意認為:正如光具有波粒二象性一樣,實體的微粒(如電子、原子等)也具有這種性質,即既具有粒子性也具有波動性。這一假說不久就為實驗所證實。
由于微觀粒子具有波粒二象性,微觀粒子所遵循的運動規(guī)律就不同于宏觀物體的運動規(guī)律,描述微觀粒子運動規(guī)律的量子力學也就不同于描述宏觀物體運動規(guī)律的經典力學。當粒子的大小由微觀過渡到宏觀時,它所遵循的規(guī)律也由量子力學過渡到經典力學。
量子力學與經典力學的差別首先表現在對粒子的狀態(tài)和力學量的描述及其變化規(guī)律上。在量子力學中,粒子的狀態(tài)用波函數描述,它是坐標和時間的復函數。為了描寫微觀粒子狀態(tài)隨時間變化的規(guī)律,就需要找出波函數所滿足的運動方程。這個方程是薛定諤在1926年首先找到的,被稱為薛定諤方程。
當微觀粒子處于某一狀態(tài)時,它的力學量(如坐標、動量、角動量、能量等)一般不具有確定的數值,而具有一系列可能值,每個可能值以一定的幾率出現。當粒子所處的狀態(tài)確定時,力學量具有某一可能值的幾率也就完全確定。這就是1927年,海森伯得出的測不準關系,同時玻爾提出了并協原理,對量子力學給出了進一步的闡釋。
量子力學和狹義相對論的結合產生了相對論量子力學。經狄拉克、海森伯和泡利等人的工作發(fā)展了量子電動力學。20世紀30年代以后形成了描述各種粒子場的量子化理論──量子場論,它構成了描述基本粒子現象的理論基礎。
量子力學是在舊量子論建立之后發(fā)展建立起來的。舊量子論對經典物理理論加以某種人為的修正或附加條件以便解釋微觀領域中的一些現象。由于舊量子論不能令人滿意,人們在尋找微觀領域的規(guī)律時,從兩條不同的道路建立了量子力學。
1925年,海森堡基于物理理論只處理可觀察量的認識,拋棄了不可觀察的軌道概念,并從可觀察的輻射頻率及其強度出發(fā),和玻恩、約爾丹一起建立起矩陣力學;1926年,薛定諤基于量子性是微觀體系波動性的反映這一認識,找到了微觀體系的運動方程,從而建立起波動力學,其后不久還證明了波動力學和矩陣力學的數學等價性;狄拉克和約爾丹各自獨立地發(fā)展了一種普遍的變換理論,給出量子力學簡潔、完善的數學表達形式。
量子力學的基本內容
量子力學的基本原理包括量子態(tài)的概念,運動方程、理論概念和觀測物理量之間的對應規(guī)則和物理原理。
在量子力學中,一個物理體系的狀態(tài)由波函數表示,波函數的任意線性疊加仍然代表體系的一種可能狀態(tài)。狀態(tài)隨時間的變化遵循一個線性微分方程,該方程預言體系的行為,物理量由滿足一定條件的、代表某種運算的算符表示;測量處于某一狀態(tài)的物理體系的某一物理量的操作,對應于代表該量的算符對其波函數的作用;測量的可能取值由該算符的本征方程決定,測量的期待值由一個包含該算符的積分方程計算。
波函數的平方代表作為其變數的物理量出現的幾率。根據這些基本原理并附以其他必要的假設,量子力學可以解釋原子和亞原子的各種現象。
關于量子力學的解釋涉及許多哲學問題,其核心是因果性和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態(tài)被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態(tài)。
但量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態(tài),它只有一種變化,并按運動方程演進。因此,運動方程對決定體系狀態(tài)的力學量可以作出確定的預言。
但在量子力學中,體系的狀態(tài)有兩種變化,一種是體系的狀態(tài)按運動方程演進,這是可逆的變化;另一種是測量改變體系狀態(tài)的不可逆變化。因此,量子力學對決定狀態(tài)的物理量不能給出確定的預言,只能給出物理量取值的幾率。在這個意義上,經典物理學因果律在微觀領域失效了。
據此,一些物理學家和哲學家斷言量子力學擯棄因果性,而另一些物理學家和哲學家則認為量子力學因果律反映的是一種新型的因果性──幾率因果性。量子力學中代表量子態(tài)的波函數是在整個空間定義的,態(tài)的任何變化是同時在整個空間實現的。
20世紀70年代以來,關于遠隔粒子關聯的實驗表明,類空分離的事件存在著量子力學預言的關聯。這種關聯是同狹義相對論關于客體之間只能以不大于光速的速度傳遞物理相互作用的觀點相矛盾的。于是,有些物理學家和哲學家為了解釋這種關聯的存在,提出在量子世界存在一種全局因果性或整體因果性,這種不同于建立在狹義相對論基礎上的局域因果性,可以從整體上同時決定相關體系的行為。
量子力學用量子態(tài)的概念表征微觀體系狀態(tài),深化了人們對物理實在的理解。微觀體系的性質總是在它們與其他體系,特別是觀察儀器的相互作用中表現出來。
人們對觀察結果用經典物理學語言描述時,發(fā)現微觀體系在不同的條件下,或主要表現為波動圖象,或主要表現為粒子行為。而量子態(tài)的概念所表達的,則是微觀體系與儀器相互作用而產生的表現為波或粒子的可能性。
量子力學表明,微觀物理實在既不是波也不是粒子,真正的實在是量子態(tài)。真實狀態(tài)分解為隱態(tài)和顯態(tài),是由于測量所造成的,在這里只有顯態(tài)才符合經典物理學實在的含義。微觀體系的實在性還表現在它的不可分離性上。量子力學把研究對象及其所處的環(huán)境看作一個整體,它不允許把世界看成由彼此分離的、獨立的部分組成的。關于遠隔粒子關聯實驗的結論,也定量地支持了量子態(tài)不可分離性的觀點。
量子力學的發(fā)展簡史
量子力學是在舊量子論的基礎上發(fā)展起來的。舊量子論包括普朗克的量子假說、愛因斯坦的光量子理論和玻爾的原子理論。
1900年,普朗克提出輻射量子假說,假定電磁場和物質交換能量是以間斷的形式(能量子)實現的,能量子的大小同輻射頻率成正比,比例常數稱為普朗克常數,從而得出黑體輻射能量分布公式,成功地解釋了黑體輻射現象。
1905年,愛因斯坦引進光量子(光子)的概念,并給出了光子的能量、動量與輻射的頻率和波長的關系,成功地解釋了光電效應。其后,他又提出固體的振動能量也是量子化的,從而解釋了低溫下固體比熱問題。
1913年,玻爾在盧瑟福有核原子模型的基礎上建立起原子的量子理論。按照這個理論,原子中的電子只能在分立的軌道上運動,原子具有確定的能量,它所處的這種狀態(tài)叫“定態(tài)”,而且原子只有從一個定態(tài)到另一個定態(tài),才能吸收或輻射能量。這個理論雖然有許多成功之處,但對于進一步解釋實驗現象還有許多困難。
在人們認識到光具有波動和微粒的二象性之后,為了解釋一些經典理論無法解釋的現象,法國物理學家德布羅意于1923年提出微觀粒子具有波粒二象性的假說。德布羅意認為:正如光具有波粒二象性一樣,實體的微粒(如電子、原子等)也具有這種性質,即既具有粒子性也具有波動性。這一假說不久就為實驗所證實。
由于微觀粒子具有波粒二象性,微觀粒子所遵循的運動規(guī)律就不同于宏觀物體的運動規(guī)律,描述微觀粒子運動規(guī)律的量子力學也就不同于描述宏觀物體運動規(guī)律的經典力學。當粒子的大小由微觀過渡到宏觀時,它所遵循的規(guī)律也由量子力學過渡到經典力學。
量子力學與經典力學的差別首先表現在對粒子的狀態(tài)和力學量的描述及其變化規(guī)律上。在量子力學中,粒子的狀態(tài)用波函數描述,它是坐標和時間的復函數。為了描寫微觀粒子狀態(tài)隨時間變化的規(guī)律,就需要找出波函數所滿足的運動方程。這個方程是薛定諤在1926年首先找到的,被稱為薛定諤方程。
當微觀粒子處于某一狀態(tài)時,它的力學量(如坐標、動量、角動量、能量等)一般不具有確定的數值,而具有一系列可能值,每個可能值以一定的幾率出現。當粒子所處的狀態(tài)確定時,力學量具有某一可能值的幾率也就完全確定。這就是1927年,海森伯得出的測不準關系,同時玻爾提出了并協原理,對量子力學給出了進一步的闡釋。
量子力學和狹義相對論的結合產生了相對論量子力學。經狄拉克、海森伯和泡利等人的工作發(fā)展了量子電動力學。20世紀30年代以后形成了描述各種粒子場的量子化理論──量子場論,它構成了描述基本粒子現象的理論基礎。
量子力學是在舊量子論建立之后發(fā)展建立起來的。舊量子論對經典物理理論加以某種人為的修正或附加條件以便解釋微觀領域中的一些現象。由于舊量子論不能令人滿意,人們在尋找微觀領域的規(guī)律時,從兩條不同的道路建立了量子力學。
1925年,海森堡基于物理理論只處理可觀察量的認識,拋棄了不可觀察的軌道概念,并從可觀察的輻射頻率及其強度出發(fā),和玻恩、約爾丹一起建立起矩陣力學;1926年,薛定諤基于量子性是微觀體系波動性的反映這一認識,找到了微觀體系的運動方程,從而建立起波動力學,其后不久還證明了波動力學和矩陣力學的數學等價性;狄拉克和約爾丹各自獨立地發(fā)展了一種普遍的變換理論,給出量子力學簡潔、完善的數學表達形式。
量子力學的基本內容
量子力學的基本原理包括量子態(tài)的概念,運動方程、理論概念和觀測物理量之間的對應規(guī)則和物理原理。
在量子力學中,一個物理體系的狀態(tài)由波函數表示,波函數的任意線性疊加仍然代表體系的一種可能狀態(tài)。狀態(tài)隨時間的變化遵循一個線性微分方程,該方程預言體系的行為,物理量由滿足一定條件的、代表某種運算的算符表示;測量處于某一狀態(tài)的物理體系的某一物理量的操作,對應于代表該量的算符對其波函數的作用;測量的可能取值由該算符的本征方程決定,測量的期待值由一個包含該算符的積分方程計算。
波函數的平方代表作為其變數的物理量出現的幾率。根據這些基本原理并附以其他必要的假設,量子力學可以解釋原子和亞原子的各種現象。
關于量子力學的解釋涉及許多哲學問題,其核心是因果性和物理實在問題。按動力學意義上的因果律說,量子力學的運動方程也是因果律方程,當體系的某一時刻的狀態(tài)被知道時,可以根據運動方程預言它的未來和過去任意時刻的狀態(tài)。
但量子力學的預言和經典物理學運動方程(質點運動方程和波動方程)的預言在性質上是不同的。在經典物理學理論中,對一個體系的測量不會改變它的狀態(tài),它只有一種變化,并按運動方程演進。因此,運動方程對決定體系狀態(tài)的力學量可以作出確定的預言。
但在量子力學中,體系的狀態(tài)有兩種變化,一種是體系的狀態(tài)按運動方程演進,這是可逆的變化;另一種是測量改變體系狀態(tài)的不可逆變化。因此,量子力學對決定狀態(tài)的物理量不能給出確定的預言,只能給出物理量取值的幾率。在這個意義上,經典物理學因果律在微觀領域失效了。
據此,一些物理學家和哲學家斷言量子力學擯棄因果性,而另一些物理學家和哲學家則認為量子力學因果律反映的是一種新型的因果性──幾率因果性。量子力學中代表量子態(tài)的波函數是在整個空間定義的,態(tài)的任何變化是同時在整個空間實現的。
20世紀70年代以來,關于遠隔粒子關聯的實驗表明,類空分離的事件存在著量子力學預言的關聯。這種關聯是同狹義相對論關于客體之間只能以不大于光速的速度傳遞物理相互作用的觀點相矛盾的。于是,有些物理學家和哲學家為了解釋這種關聯的存在,提出在量子世界存在一種全局因果性或整體因果性,這種不同于建立在狹義相對論基礎上的局域因果性,可以從整體上同時決定相關體系的行為。
量子力學用量子態(tài)的概念表征微觀體系狀態(tài),深化了人們對物理實在的理解。微觀體系的性質總是在它們與其他體系,特別是觀察儀器的相互作用中表現出來。
人們對觀察結果用經典物理學語言描述時,發(fā)現微觀體系在不同的條件下,或主要表現為波動圖象,或主要表現為粒子行為。而量子態(tài)的概念所表達的,則是微觀體系與儀器相互作用而產生的表現為波或粒子的可能性。
量子力學表明,微觀物理實在既不是波也不是粒子,真正的實在是量子態(tài)。真實狀態(tài)分解為隱態(tài)和顯態(tài),是由于測量所造成的,在這里只有顯態(tài)才符合經典物理學實在的含義。微觀體系的實在性還表現在它的不可分離性上。量子力學把研究對象及其所處的環(huán)境看作一個整體,它不允許把世界看成由彼此分離的、獨立的部分組成的。關于遠隔粒子關聯實驗的結論,也定量地支持了量子態(tài)不可分離性的觀點。

