備戰(zhàn)2010高考數(shù)學――壓軸題跟蹤演練系列四
1.(本小題滿分14分)
已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
本小題主要考查函數(shù)的單調(diào)性,導數(shù)的應用和不等式等有關知識,考查數(shù)形結合及分類討論思想和靈活運用數(shù)學知識分析問題和解決問題的能力.滿分14分.
解:(Ⅰ)f'(x)==,
∵f(x)在[-1,1]上是增函數(shù),
∴f'(x)≥0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立.①
設(x)=x2-ax-2,
方法一:
(1)=1-a-2≤0,
①-1≤a≤1,
(-1)=1+a-2≤0.
∵對x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當a=1時......
點擊下載試題
1.(本小題滿分14分)
已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
本小題主要考查函數(shù)的單調(diào)性,導數(shù)的應用和不等式等有關知識,考查數(shù)形結合及分類討論思想和靈活運用數(shù)學知識分析問題和解決問題的能力.滿分14分.
解:(Ⅰ)f'(x)==,
∵f(x)在[-1,1]上是增函數(shù),
∴f'(x)≥0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立.①
設(x)=x2-ax-2,
方法一:
(1)=1-a-2≤0,
①-1≤a≤1,
(-1)=1+a-2≤0.
∵對x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當a=1時......
點擊下載試題