抽屜原理教學(xué)設(shè)計(jì)(十四篇)

字號(hào):

    范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來了解一下吧。
    抽屜原理教學(xué)設(shè)計(jì)篇一
    激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建?!保箯?fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。
    :
    1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。
    2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
    :
    重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來,誰愿來?(學(xué)生上來后)
    師:聽清要求 ,老師說開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。
    師:開始。
    師:都坐下了嗎?
    生:坐下了。
    師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”我說得對(duì)嗎?
    生:對(duì)!
    師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。(抽屜原理)
    1、研究3枝鉛筆放進(jìn)2個(gè)文具盒。
    (1)要把3枝鉛筆放進(jìn)2個(gè)文具盒 ,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
    (2)反饋:兩種放法:(3,0)和(2,1)。
    (3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)
    (4)“總有”什么意思?(一定有)
    (5)“至少”有2枝什么意思?(不少于2枝)
    小結(jié):在研究3枝鉛筆放進(jìn)2個(gè)文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)文具盒放進(jìn)2枝鉛筆)
    2、研究4枝鉛筆放進(jìn)3個(gè)文具盒。
    (1)要把4枝鉛筆放進(jìn)3個(gè)文具盒里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
    (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
    (3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)筆盒至少有2枝鉛筆)
    (4)你是怎么發(fā)現(xiàn)的?
    (5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)文具盒放進(jìn)2枝鉛筆”。如果要讓每個(gè)文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個(gè)文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)文具盒,總會(huì)有一個(gè)文具盒至少有2枝筆)(你真是一個(gè)善于思想的孩子。)
    (6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個(gè)文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)
    (7)誰能用算式來表示這位同學(xué)的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?
    (8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問題,同學(xué)們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來說明理由,你覺得哪種方法更明了更簡單?
    3、類推:把5枝鉛筆放進(jìn)4個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
    把6枝鉛筆放進(jìn)5個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
    把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
    把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
    4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。)
    5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)筆盒至少有2枝鉛筆?!?BR>    6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。
    這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體?!?BR>    7、在我們的生活中,常常會(huì)遇到抽屜原理,你能不能舉個(gè)例子?在課前我們玩的游戲中,有沒有抽屜原理?
    過渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮硌芯窟@樣一組問題。
    1、研究把5本書放進(jìn)2個(gè)抽屜。
    (1)把5本書放進(jìn)2個(gè)抽屜會(huì)有幾種情況?(5,0)、(4,1)和(3,2)
    (2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個(gè)抽屜至少放進(jìn)了3本書)
    (3)還可以怎樣理解這個(gè)結(jié)論?先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。
    (4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?
    2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,至少有一個(gè)抽屜放進(jìn)4本書。
    如果把9本書放進(jìn)2個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)5本書。
    如果把11本書放進(jìn)3個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?
    3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)
    4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
    5、做一做:
    7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)佶舍里。為什么?
    8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?
    (先讓學(xué)生獨(dú)立思考,在小組里討論,再全班反饋)
    下面我們一起來放松一下,做個(gè)小游戲。
    我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?
    這節(jié)課,你有什么收獲?
    抽屜原理教學(xué)設(shè)計(jì)篇二
    1.知識(shí)與能力:初步了解抽屜原理,運(yùn)用抽屜原理知識(shí)解決簡單的實(shí)際問題。
    2.過程和方法:經(jīng)歷抽屜原理的探究過程,通過動(dòng)手操作、分析、推理等活動(dòng),發(fā)現(xiàn)、歸納、總結(jié)原理。
    3.情感與價(jià)值:通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力;提高同學(xué)們解決問題的能力和興趣。
    經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    一、創(chuàng)設(shè)情景
    導(dǎo)入新課
    師:同學(xué)們喜歡玩游戲嗎?講臺(tái)前面有6張凳子,請(qǐng)7位同學(xué)來搶凳子坐。我不看同學(xué)們?cè)鯓幼?,我敢肯定的說:這6張凳子中總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?(師生演示)
    師:想知道老師為什么能做出如此準(zhǔn)確的判斷嗎?這其中蘊(yùn)含一個(gè)有趣的數(shù)學(xué)原理——抽屜原理。(板書課題)這節(jié)課我們就一起來研究這個(gè)數(shù)學(xué)原理。
    師:通過今天的學(xué)習(xí),你想知道些什么?
    二、自主操作
    探究新知
    (一)活動(dòng)一課件出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?師:你們擺擺看,會(huì)有什么發(fā)現(xiàn)?把你們發(fā)現(xiàn)的.結(jié)果用自己喜歡的方式記錄下來。
    1、學(xué)生動(dòng)手操作,師巡視,了解情況。
    2、匯報(bào)交流說理活動(dòng)
    ①師:有什么發(fā)現(xiàn)?誰能說說看?
    師根據(jù)學(xué)生的回答用數(shù)字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)師:你們是這樣記錄的嗎?
    師:還可以用圖記錄。我把用圖記錄的用課件展示出來。師:還可以用表格記錄。師板書在黑板上。 ②再認(rèn)真觀察記錄,還有什么發(fā)現(xiàn)?
    板書:不管怎樣放,總有一個(gè)筆筒里至少有2枝鉛筆。
    ③怎樣擺可以一次得出結(jié)論?(啟發(fā)學(xué)生用平均分的擺法,引出用除法計(jì)算。)板書:4÷3=1(枝)1(枝)
    ④師:這種方法是不是很快就能確定總有一個(gè)筆筒里至少有幾枝鉛筆呢?(學(xué)生交流)
    ⑤把5枝鉛筆放進(jìn)4個(gè)筆筒里呢?還用擺嗎?板書:5÷4=1(枝)1(枝)
    ⑥課件出示:把6枝鉛筆放進(jìn)5個(gè)筆筒呢?把7枝鉛筆放進(jìn)6個(gè)筆筒呢?把10枝鉛筆放進(jìn)9個(gè)筆筒呢?把100枝鉛筆放進(jìn)99個(gè)筆筒呢?板書:7÷6=1(枝)1(枝)10÷9=1(枝)1(枝)100÷99=1(枝)1(枝)
    ⑦觀察這些算式你發(fā)現(xiàn)了什么規(guī)律?預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù)
    師:是不是這個(gè)規(guī)律呢?我們來試一試吧!
    3、深化探究得出結(jié)論
    課件出示:5只鴿子飛回3個(gè)鴿籠,至少有兩只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?
    ①學(xué)生活動(dòng)
    ②交流說理活動(dòng)
    預(yù)設(shè):生1:題目的說法是錯(cuò)誤的,用商加余數(shù),應(yīng)該至少有3只鴿子要飛進(jìn)同一個(gè)鴿籠。
    生2:不同意!不是“商加余數(shù)”是“商加1”.
    ③師:到底是“商加余數(shù)”還是“商加1”?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。
    ④師:誰能說清楚?板書:5÷3=1(只)2(只)至少數(shù)=商+1
    (二)活動(dòng)二
    課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    1、分組操作后匯報(bào)
    板書:5÷2=2(本)1(本)7÷2=2(本)1(本)9÷2=2(本)1(本)
    2、那么探究到現(xiàn)在,大家認(rèn)為怎樣才能確定總有一個(gè)抽屜至少有幾本書?生:至少數(shù)=商+1
    3、師:我同意大家的討論。我們這個(gè)發(fā)現(xiàn)就是有趣的“抽屜原理
    ”,(點(diǎn)題)?!俺閷显怼庇址Q“鴿籠原理”,最先是由19世紀(jì)德國數(shù)學(xué)家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實(shí)際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
    三、靈活應(yīng)用
    解決問題
    1、解釋課前提出的游戲問題。
    2、課件出示:8只鴿子飛回3個(gè)鴿舍,不管怎樣分,總有一個(gè)鴿舍至少有幾只鴿子?
    3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?
    4、課件出示:任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。為什么?
    四、暢談感受
    同學(xué)們,今天這節(jié)課有什么感受?(抽生談?wù)?,師總結(jié)。)在這堂課中,我首先設(shè)計(jì)(搶凳子游戲,講臺(tái)前面有6張凳子,請(qǐng)7位同學(xué)來搶凳子坐。我不看同學(xué)們?cè)鯓幼?,我敢肯定的說:這6張凳子中同學(xué)們不管怎樣坐,總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?)目的一:小孩子最喜歡玩游戲,一說玩游戲,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性;目的二:激發(fā)學(xué)生思考什么是抽屜原理,對(duì)解決這類問題有什么作用?
    接著出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?我讓學(xué)生用自已喜歡的方法動(dòng)手操作、匯報(bào)、板書,得出結(jié)論,又提出:怎樣擺可以一次得出結(jié)論?小組討論,然后針對(duì)他們的方法進(jìn)行講解(邊操作邊講解),其實(shí)這方法是用平均分的擺法,引出用除法計(jì)算。)板書:4÷3=1(枝)1(枝)得出預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù),讓學(xué)生有更深的認(rèn)識(shí),同時(shí)也讓他們了解平均分的擺法最好,為后面的學(xué)習(xí)打下鋪墊。
    然后,出示活動(dòng)二:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?先動(dòng)手操作,同時(shí)用算式計(jì)算,看算式的規(guī)律是:發(fā)現(xiàn)是至少數(shù)=商+1接著我反問任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。為什么?這樣有利于學(xué)生的反向思維能力的鍛煉。
    抽屜原理教學(xué)設(shè)計(jì)篇三
    《抽屜原理的認(rèn)識(shí)》是人教版數(shù)學(xué)六年級(jí)下冊(cè)第五章內(nèi)容。在數(shù)學(xué)問題中有一類與“存在性”有關(guān)的問題。在這類問題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說明是通過什么方式把這個(gè)存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”。“抽屜原理”最先是由19世紀(jì)的德國數(shù)學(xué)家狄里克雷(dirichlet)運(yùn)用于解決數(shù)學(xué)問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、
    本節(jié)課我根據(jù)“教師是組織者、引導(dǎo)者和合作者”這一理念,以學(xué)生參與活動(dòng)為主線,創(chuàng)建新型的教學(xué)結(jié)構(gòu)。通過幾個(gè)直觀的例子,用假設(shè)法向?qū)W生介紹“抽屜原理”,學(xué)生難以理解,感覺抽象。在教學(xué)時(shí),我結(jié)合本班實(shí)際,用學(xué)生熟悉的吸管和杯子貫穿整個(gè)課堂,讓學(xué)生通過動(dòng)手操作,在活動(dòng)中真正去認(rèn)識(shí)、理解“抽屜原理”學(xué)生學(xué)得輕松也容易接受。
    1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。
    2、通過操作發(fā)展 的類推能力,形成抽象的數(shù)學(xué)思維。
    3、通過“抽屜原理”的靈活應(yīng)用,感受數(shù)學(xué)的魅力。
    【教學(xué)重點(diǎn)】
    經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    【教學(xué)難點(diǎn)】
    理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    抽屜原理教學(xué)設(shè)計(jì)篇四
    1.教材分析
    《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角的教學(xué)內(nèi)容。這部分教材通過幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“抽屜原理”,使學(xué)生在理解“抽屜原理”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡單的實(shí)際問題加以“模型化”,會(huì)用“抽屜原理”加以解決。
    2.學(xué)情分析
    “抽屜原理”在生活中運(yùn)用廣泛,學(xué)生在生活中常常能遇到實(shí)例,但并不能有意識(shí)地從數(shù)學(xué)的角度來理解和運(yùn)用“抽屜原理”。教學(xué)中應(yīng)有意識(shí)地讓學(xué)生理解“抽屜原理”的“一般化模型”。六年級(jí)學(xué)生的邏輯思維能力、小組合作能力和動(dòng)手操作能力都有了較大的提高,加上已有的生活經(jīng)驗(yàn),很容易感受到用“抽屜原理”解決問題帶來的樂趣。
    3.教學(xué)理念
    激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建?!保箯?fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。
    4.教學(xué)目標(biāo)1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。
    2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
    5.教學(xué)重難點(diǎn)
    重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    6.教學(xué)過程
    一、課前游戲引入。
    上課前,我們先來熱身一下,一起來玩搶椅子的游戲。
    這有4把椅子,請(qǐng)5位同學(xué)上來參加游戲,游戲規(guī)則是:在老師說開始時(shí),5位同學(xué)繞著椅子走,當(dāng)老師說停的,5位同學(xué)都要坐在椅子上。
    為什么總有一張椅子至少坐兩個(gè)同學(xué)?
    在這個(gè)游戲中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理叫做抽屜理原,這節(jié)課我們就一起來研究抽屜理原。(板書課題)
    二、通過操作,探究新知
    (一)探究物體數(shù)比抽屜數(shù)多1的情況
    1、把3根小棒放進(jìn)2個(gè)杯子中,有幾種不同的放法?(1)同桌合作,想一想,擺一擺,并記錄下來。
    (2)反饋:兩種放法:(3,0)和(2,1)。
    (3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)杯子中至少放進(jìn)2根小棒)你是怎么發(fā)現(xiàn)的?
    (4)“總有”什么意思?(一定有)
    (5)“至少”有2根什么意思?(不少于2根)
    小結(jié):把3根小棒放進(jìn)2個(gè)杯子中,不管怎么放,總有一個(gè)杯子中至少放進(jìn)了2根小棒。
    2、要把4根小棒放進(jìn)3個(gè)杯子里,有幾種放法?
    (1)請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
    (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
    (3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)杯子里至少有2根小棒)
    (4)你是怎么發(fā)現(xiàn)的?
    (5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)杯子里放進(jìn)了2根小棒”。
    3、類推:把6根小棒放入5個(gè)杯子中,總有一個(gè)杯子中至少有幾根小棒,為什么?
    還用不用把所有的擺法再一一列舉出來,有什么方法只擺一次就能證明這個(gè)結(jié)論。(平均分)
    為什么用平均分的方法就能證明這個(gè)結(jié)論?余下的小棒怎么分?
    怎樣用算式表示?(6÷5=11,商1表示什么,余1又表示什么?)把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
    把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
    4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(當(dāng)物體數(shù)比抽屜數(shù)多1,就總有一個(gè)抽屜中至少放進(jìn)了2個(gè)物體。)
    7、在我們的生活中,常常會(huì)遇到抽屜原理,你能不能舉個(gè)例子?在課前我們玩的游戲中,有沒有抽屜原理?
    過渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮硌芯窟@樣一組問題。
    (二)探究物體數(shù)比抽屜數(shù)多幾倍還多的情況
    1、研究把5根小棒放進(jìn)3個(gè)杯子
    (1)把5根小棒放進(jìn)3個(gè)杯子,總有一個(gè)杯子中至少有幾根小棒?
    (2)可以怎樣分,用平均分的方法證明一下。先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。
    (4)可以把我們的想法用算式表示出來:5÷3=1…2(商1表示什么,余數(shù)2表示什么)2+1=3表示什么?
    2、類推:如果把9根小棒放進(jìn)4個(gè)杯子中,15根小棒也放進(jìn)4個(gè)杯子中,會(huì)有什么結(jié)論?
    3、怎樣求至少數(shù)?(商+1)
    3、小結(jié):當(dāng)物體數(shù)比抽屜數(shù)多幾倍還多的情況,用物體數(shù)除以抽屜數(shù),有余數(shù)時(shí),至少數(shù)=商+1.
    4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
    5、做一做:
    (1)8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?
    (先讓學(xué)生獨(dú)立思考,在小組里討論,再全班反饋)
    (2)11個(gè)小朋友同行,其中至少有幾個(gè)小朋友性別相同?
    (3)從電影院任意找來15個(gè)觀眾,至少有幾個(gè)人屬相相同?
    (找到題中什么當(dāng)抽屜,物體數(shù)是多少,運(yùn)用抽屜原理列出算式,并解釋原因)
    三、遷移與拓展
    1、下面我們一起來放松一下,做個(gè)小游戲。
    我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?
    2、用三種顏色給正方體的各面涂色(每面只涂一種顏色),請(qǐng)你證明至少有兩個(gè)面涂
    色相同。
    得出結(jié)論:當(dāng)物體數(shù)除以抽屜數(shù),整除時(shí),至少數(shù)=商
    四、總結(jié)全課這節(jié)課,你有什么收獲?
    新一輪的課程改革,把原本在奧數(shù)教材中出現(xiàn)的一些開發(fā)智力、開闊視野的數(shù)學(xué)思維訓(xùn)練內(nèi)容也加入到數(shù)學(xué)教材中,以“數(shù)學(xué)廣角”單元的形式出現(xiàn)?!俺閷显怼笔橇昙?jí)下冊(cè)內(nèi)容,應(yīng)用很廣泛且靈活多變,可以解決一些看上去很復(fù)雜、覺得無從下手,卻又是相當(dāng)有趣的數(shù)學(xué)問題。但對(duì)于小學(xué)生來說,理解和掌握“抽屜原理”還存在著一定的難度。這對(duì)我們數(shù)學(xué)教師的教學(xué)提出了挑戰(zhàn)。通過課堂實(shí)踐,感受頗深,反思我的教學(xué)過程,有幾下幾點(diǎn)可取之處:
    1、創(chuàng)設(shè)情境,從學(xué)生熟悉的素材開始激發(fā)興趣,
    興趣是最好的老師。課前“搶凳子”游戲,簡單卻能真實(shí)的反映“抽屜原理”的本質(zhì)。通過猜測(cè),一下就抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問題,好玩又有意義。
    2、建立模型,本節(jié)課充分放手,讓學(xué)生自主思考,恰當(dāng)引導(dǎo)
    教師是學(xué)生的合作者,引導(dǎo)者。在活動(dòng)設(shè)計(jì)中,我注重學(xué)生經(jīng)歷知識(shí)產(chǎn)生、形成的過程。4根小棒放進(jìn)3個(gè)杯子的結(jié)果早就可想而知,但讓學(xué)生通過放一放、想一想、議一議的過程,把抽象的說理用具體的實(shí)物演示出來,化抽象為具體,發(fā)現(xiàn)并描述、理解了最簡單的“抽屜原理”。在此基礎(chǔ)上,我又主動(dòng)提問:還有什么有價(jià)值的問題研究嗎?讓學(xué)生自主的想到:小棒數(shù)比杯子數(shù)多2或其它數(shù)會(huì)怎么樣?來繼續(xù)開展探究活動(dòng),同時(shí),通過活動(dòng)結(jié)合板書引導(dǎo)學(xué)生歸納出求至少數(shù)的方法。
    3、解釋應(yīng)用,深化知識(shí)。
    學(xué)了“抽屜原理”有什么用?能解決生活中的什么問題,這就要求在教學(xué)中要注重聯(lián)系學(xué)生的生活實(shí)際。在試一試環(huán)節(jié)里,我設(shè)計(jì)了一組簡單、真實(shí)的生活情境,讓學(xué)生用學(xué)過的知識(shí)來解釋這些現(xiàn)象,有效的將學(xué)生的自主探究學(xué)習(xí)延伸到課外,體現(xiàn)了“數(shù)學(xué)來源于生活,又還原于生活”的理念。
    教學(xué)永遠(yuǎn)是一門遺憾的藝術(shù)?;仡櫿?jié)課我覺得還有許多不足之處,學(xué)生對(duì)至少數(shù)的理解還很模糊,只是按照程式推導(dǎo)出至少數(shù)的求法,并沒有真正體會(huì)出抽屜原理的本質(zhì)。沒有給學(xué)生足夠思考的空間,只是有部分學(xué)生說出就給出結(jié)論,面向的應(yīng)是全體學(xué)生,這是在我教學(xué)過程中還應(yīng)加強(qiáng)的部分。
    抽屜原理教學(xué)設(shè)計(jì)篇五
    《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級(jí)下冊(cè)。
    讓學(xué)生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實(shí)際問題,初步感受數(shù)學(xué)的魅力。主要培養(yǎng)學(xué)生的思考和推理能力,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)原理”的過程,提高學(xué)生數(shù)學(xué)應(yīng)用意識(shí)。
    教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學(xué)生在操作實(shí)物的過程中可以發(fā)現(xiàn)一個(gè)現(xiàn)象:不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。
    1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。
    2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
    經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    每組都有3個(gè)文具盒和4枝鉛筆。
    教師:同學(xué)們,你們?cè)陔娔X上玩過“電腦算命”嗎?“電腦算命”看起來很深?yuàn)W,只要報(bào)出你的出生的年、月、日和性別,一按鍵,屏幕上就會(huì)出現(xiàn)所謂性格、命運(yùn)、財(cái)運(yùn)等。通過今天的`學(xué)習(xí),我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非常可笑和荒唐的,是不能信的鬼把戲。
    板書:抽屜原理
    教師:通過學(xué)習(xí),你想解決那些問題?
    根據(jù)學(xué)生回答,教師把學(xué)生提出的問題歸結(jié)為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運(yùn)用“抽屜原理”能解決那些問題?怎樣運(yùn)用“抽屜原理”解決實(shí)際問題?
    出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?
    師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)
    師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?
    生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?
    師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。
    師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))
    師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。
    (4,0,0)(3,1,0) (2,2,0)(2,1,1),
    師:還有不同的放法嗎?
    生:沒有了。
    師:你能發(fā)現(xiàn)什么?
    生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:“總有”是什么意思?
    生:一定有
    師:“至少”有2枝什么意思?
    生:不少于兩只,可能是2枝,也可能是多于2枝?
    師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗(yàn)感受)
    師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論呢?
    學(xué)生思考——組內(nèi)交流——匯報(bào)
    師:哪一組同學(xué)能把你們的想法匯報(bào)一下?
    組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。
    師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)
    師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?
    師:這種分法,實(shí)際就是先怎么分的?
    生眾:平均分
    師:為什么要先平均分?(組織學(xué)生討論)
    生1:要想發(fā)現(xiàn)存在著“總有一個(gè)盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。
    生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?
    師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說一說)
    師:哪位同學(xué)能把你的想法匯報(bào)一下,
    生:(一邊演示一邊說)5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?
    生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:把7枝筆放進(jìn)6個(gè)盒子里呢?
    把8枝筆放進(jìn)7個(gè)盒子里呢?
    把9枝筆放進(jìn)8個(gè)盒子里呢?……
    你發(fā)現(xiàn)什么?
    生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
    1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    (留給學(xué)生思考的空間,師巡視了解各種情況)
    2.學(xué)生匯報(bào)。
    生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。
    板書:5本2個(gè)2本……余1本(總有一個(gè)抽屜里至有3本書)
    7本2個(gè)3本……余1本(總有一個(gè)抽屜里至有4本書)
    9本2個(gè)4本……余1本(總有一個(gè)抽屜里至有5本書)
    師:2本、3本、4本是怎么得到的?生答完成除法算式。
    5÷2=2本……1本(商加1)
    7÷2=3本……1本(商加1)
    9÷2=4本……1本(商加1)
    師:觀察板書你能發(fā)現(xiàn)什么?
    生1:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。
    師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    生:“總有一個(gè)抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
    生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。
    師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。
    交流、說理活動(dòng):
    生1:我們組通過討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。
    生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是“總有一個(gè)抽屜里至少有2本書”。
    生3我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,“總有一個(gè)抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。
    師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?
    生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。
    師:同學(xué)們同意吧?
    師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
    3.解決問題。71頁第3題。(獨(dú)立完成,交流反饋)
    小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個(gè)小游戲。
    師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?
    生:2張/因?yàn)?÷4=1…1
    師:先驗(yàn)證一下你們的猜測(cè):舉牌驗(yàn)證。
    師:如有3張同花色的,符合你們的猜測(cè)嗎?
    師:如果9個(gè)人每一個(gè)人抽一張呢?
    生:至少有3張牌是同一花色,因?yàn)?÷4=2…1
    上面我們所證明的數(shù)學(xué)原理就是最簡單的“抽屜原理”,可以概括為:把m個(gè)物體任意放到m-1個(gè)抽屜里,那么總有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。
    1.從街上隨便找來13人,就可以斷定他們中至少有兩個(gè)人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。
    2.任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。說明理由。
    1、小組活動(dòng)很容易抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問題即好玩又有意義。
    2、理解“抽屜原理”對(duì)于學(xué)生來說有著一定的難度。
    3、部分學(xué)生很難判斷誰是物體,誰是抽屜。
    抽屜原理教學(xué)設(shè)計(jì)篇六
    1.知識(shí)與能力目標(biāo):
    經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。通過猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建?!彼枷搿?BR>    2.過程與方法目標(biāo):
    經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
    3.情感、態(tài)度與價(jià)值觀目標(biāo):
    通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
    教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    教學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    教學(xué)準(zhǔn)備:教具:5個(gè)杯子,6根小棒;學(xué)具:每組5個(gè)杯子,6根小棒。
    師:同學(xué)們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)€游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對(duì)嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請(qǐng)5位同學(xué)上來各抽一張,我們來驗(yàn)證一下。如果再請(qǐng)五位同學(xué)來抽,我還敢這樣肯定地說,你們相信嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,想不想研究???
    (一)經(jīng)歷“抽屜原理”的探究過程,理解原理。
    1.研究小棒數(shù)比杯子數(shù)多1的情況。
    師:今天這節(jié)課我們就用小棒和杯子來研究。板書:小棒杯子
    師:如果把3根小棒放在2個(gè)杯子里,該怎樣放?有幾種放法?
    學(xué)生分組操作,并把操作的結(jié)果記錄下來。
    請(qǐng)一個(gè)小組匯報(bào)操作過程,教師在黑板上記錄。
    師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個(gè)杯子里至少有幾根小棒?板書:總有一個(gè)杯子里至少有。
    師:依此推想下去,4根小棒放在3個(gè)杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?
    學(xué)生分組操作,并把操作的結(jié)果記錄下來。
    請(qǐng)一個(gè)小組代表匯報(bào)操作過程,教師在黑板上記錄。
    師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?
    師:那如果把6根小棒放在5個(gè)杯子里,猜一猜,會(huì)有什么樣的結(jié)果?
    師:怎樣驗(yàn)證猜測(cè)的結(jié)果對(duì)不對(duì),你又什么好方法?引導(dǎo)學(xué)生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1
    師:那如果用這種方法,你知道把7根小棒放在6個(gè)杯子里,把10根小棒放在9個(gè)杯子里,把100根小棒放在99個(gè)杯子里,會(huì)有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?
    師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個(gè)杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會(huì)有什么樣的結(jié)果呢?
    2、研究小棒數(shù)比杯子數(shù)多2、多3的.情況。
    師:如果把5根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果?
    引導(dǎo):先平均分,每個(gè)杯子里分得1根小棒,余下的2根小棒又該怎么分呢?
    師:把7根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果呢?為什么?
    3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。
    師:如果把9根小棒放在4個(gè)杯子里,把15根小棒放在4個(gè)杯子里,分別又會(huì)有什么結(jié)果?
    小組內(nèi)討論,再請(qǐng)同學(xué)說結(jié)果和理由。
    4、總結(jié)規(guī)律。
    師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?
    總結(jié):把m個(gè)物體放在n個(gè)抽屜里(m﹥n),總有一個(gè)抽屜至少有“商+1”個(gè)物體。
    5、介紹抽屜原理。
    “抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
    1、把5本書放進(jìn)2個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?為什么?
    先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。
    2、8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
    3、向東小學(xué)六年級(jí)共有370名學(xué)生,其中六(2)班有49名學(xué)生。請(qǐng)問下面兩人說的對(duì)嗎?為什么?
    (1)六年級(jí)里至少有兩人的生日是同一天。
    (2)六(2)班中至少有5人是同一個(gè)月出生的。
    4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?
    5、師:開課時(shí)我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會(huì)有2張牌是同一花色的?你能用所學(xué)的抽屜原理來解釋嗎?
    說一說:今天這節(jié)課,我們又學(xué)習(xí)了什么新知識(shí)?(師生共同對(duì)本節(jié)課的內(nèi)容進(jìn)行小結(jié))
    。
    數(shù)學(xué)廣角——抽屜原理
    物體數(shù)÷抽屜數(shù)= 商……余數(shù) 至少數(shù) =商+1
    小棒 杯子 總有一個(gè)杯子里至少有
    3 2 2
    4 3 2
    6 ÷ 5 = 1……1 2
    5 ÷ 3 = 1……2 2
    7 ÷ 4 = 1……3 2
    9 ÷ 4 = 2……1 3
    15 ÷ 4 = 3……3 4
    1、通過游戲,激發(fā)興趣。
    興趣是最好的老師。課前我設(shè)計(jì)了從52張撲克牌(去掉2張王牌)中任意抽取5張,老師肯定地說:至少有2張牌是同一花色的,在學(xué)生半信半疑時(shí),師生共同游戲,讓學(xué)生信服,但又不知道其中奧妙,這樣導(dǎo)入,學(xué)生興趣盎然。
    2、操作探究,建立模型。
    本節(jié)課充分放手,讓學(xué)生自主思考,采用自己的方法“證明”:“把4根小棒放入3個(gè)杯子里,不管怎么放,總有一個(gè)杯子里至少有2根小棒”,然后交流展示,為后面開展教與學(xué)的活動(dòng)做了鋪墊。此處設(shè)計(jì)注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極性。在有趣的類推活動(dòng)中,引導(dǎo)學(xué)生得出一般性的結(jié)論,讓學(xué)生體驗(yàn)和理解“抽屜原理”的最基本原理,當(dāng)物體個(gè)數(shù)大于抽屜個(gè)數(shù)時(shí),一定有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。這樣的教學(xué)過程,從方法層面和知識(shí)層面上對(duì)學(xué)生進(jìn)行了提升,有助于發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。在評(píng)價(jià)學(xué)生各種“證明”方法,針對(duì)學(xué)生的不同方法教師給予針對(duì)性的鼓勵(lì)和指導(dǎo),讓學(xué)生在自主探索中體驗(yàn)成功,獲得發(fā)展。在學(xué)生自主探索的基礎(chǔ)上,進(jìn)一步比較優(yōu)化,讓學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來思考問題。在這一環(huán)節(jié)的教學(xué)中抓住了假設(shè)法最核心的思路就是用“有余數(shù)除法” 形式表示出來,使學(xué)生借助直觀,很好的理解了如果把物體盡量多地“平均分”給各個(gè)抽屜里,看每個(gè)抽屜里能分到多少,余下的不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里比平均分得的數(shù)量多1。特別是對(duì)“某個(gè)抽屜至少有的數(shù)量”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時(shí)挑出針對(duì)性問題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了“抽屜原理”。
    3、解釋應(yīng)用,深化知識(shí)。
    學(xué)了“抽屜原理”有什么用?能解決生活中的什么問題,這就要求在教學(xué)中要注重聯(lián)系學(xué)生的生活實(shí)際。在應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力環(huán)節(jié)里,我設(shè)計(jì)了一組簡單、真實(shí)的生活情境,讓學(xué)生用學(xué)過的知識(shí)來解釋這些現(xiàn)象,有效的將學(xué)生的自主探究學(xué)習(xí)延伸到課外,體現(xiàn)了“數(shù)學(xué)來源于生活,又還原于生活”的理念。
    反思本節(jié)課的教學(xué),有以下幾點(diǎn)不足:
    1、在把3根小棒放進(jìn)2個(gè)杯子,把4根小棒放進(jìn)3個(gè)杯子里,都讓學(xué)生進(jìn)行了操作并做了記錄,但對(duì)學(xué)生的有序思考重視不夠,導(dǎo)致課堂檢測(cè)時(shí),學(xué)生用列舉法解決問題的時(shí)候,有兩個(gè)同學(xué)把所有的可能都列舉對(duì)了,但不是有序排列的。還有兩個(gè)差一點(diǎn)的學(xué)生由于思維無序,因此沒能正確列舉出來。
    2、在把5根小棒放在3個(gè)杯子里,有學(xué)生出現(xiàn)了總有一個(gè)杯子里至少有3根小棒的結(jié)論,可能是用5÷3=1……2,1+2=3,也就是很多同學(xué)容易出的錯(cuò)誤:用商+余數(shù)。這時(shí)老師沒有抓住這個(gè)同學(xué)思維中的錯(cuò)誤制造思維矛盾,因此感覺學(xué)生對(duì)總有一個(gè)抽屜至少有的數(shù)量=商+1這一知識(shí)點(diǎn)的理解還不夠透徹。
    3學(xué)生在用“抽屜原理” 解決實(shí)際問題時(shí),書寫格式教師指導(dǎo)不到位。有些題目是要先說結(jié)論,再說理由。那么說理由的時(shí)候,有的同學(xué)只列了算式,如:5÷3=1……2,1+1=2,還有的同學(xué)先列算式,再回答問題。在區(qū)教研室周俊主任的指導(dǎo)下,我才明白這類題目的書寫格式是:因?yàn)?÷3=1(根)……2(根),1+1=2(根),所以每個(gè)杯子里至少有2根小棒。
    總的說來,本節(jié)課學(xué)生的學(xué)習(xí)效果還不錯(cuò),全班學(xué)生針對(duì)這類問題都能快速做出正確分析與判斷。我也算圓滿完成了這節(jié)課的學(xué)習(xí)目標(biāo),實(shí)現(xiàn)了三維目標(biāo)的有機(jī)整合。
    抽屜原理教學(xué)設(shè)計(jì)篇七
    教科書第68、69頁例1、2。
    1、使學(xué)生經(jīng)歷將一些實(shí)際問題抽象為代數(shù)問題的過程,并能運(yùn)用所學(xué)知識(shí)解決有關(guān)實(shí)際問題。
    2、能與他人交流思維過程和結(jié)果,并學(xué)會(huì)有條理地、清晰地闡述自己的觀點(diǎn)。
    教學(xué)重點(diǎn):分配方法。
    教學(xué)難點(diǎn):分配方法。
    教學(xué)方法:列舉法 分析法
    學(xué)習(xí)方法:嘗試法 自主探究法
    教學(xué)用具:課件
    (一)游戲引入
    師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來,誰愿來?
    1、游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。
    2、討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說得對(duì)嗎?
    游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。
    引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。
    (二)揭示目標(biāo)
    理解并掌握解決鴿巢問題的解答方法。
    1、看書68頁,閱讀例1:把4枝鉛筆放進(jìn)3個(gè)文具盒中,可以怎么放?有幾種情況?
    (1)理解“總有”和“至少”的意思。
    (2)理解4種放法。
    2、全班同學(xué)交流思維的過程和結(jié)果。
    3、跟蹤練習(xí)。
    68頁做一做:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
    (1)說出想法。
    如果每個(gè)鴿舍只飛進(jìn)1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進(jìn)其中的.一個(gè)鴿舍或分別飛進(jìn)其中的兩個(gè)鴿舍。所以至少有2只鴿子飛進(jìn)同一個(gè)鴿舍。
    (2)嘗試分析有幾種情況。
    (3)說一說你有什么體會(huì)。
    1、出示例2
    把7本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?(1)合作交流有幾種放法。
    不難得出,總有一個(gè)抽屜至少放進(jìn)3本。
    (2)指名說一說思維過程。
    如果每個(gè)抽屜放2本,放了6本書。剩下的1本還要放進(jìn)其中一個(gè)抽屜,所以至少有1個(gè)抽屜放進(jìn)3本書。
    2、如果一共有8本書會(huì)怎樣呢10本呢?
    3、你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?
    7÷3=2……1 (至少放3本)
    8÷3=2……2 (至少放4本)
    10÷3=3……1 (至少放5本)
    4、做一做
    11只鴿子飛回4個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
    1、鴿巢問題怎樣求?
    小結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個(gè)抽屜至少放進(jìn)的本數(shù)。
    2、做一做。
    69頁做一做2題。
    (一)小結(jié)
    鴿巢問題的解答方法是什么?
    物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜里至少放進(jìn)(商+1)個(gè)物體。
    (二)檢測(cè)
    1、填空
    ( 1)7只鴿子飛進(jìn)5個(gè)鴿舍,至少有( )只鴿子要飛進(jìn)同伴的鴿舍里。
    ( 2)有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放( )本書。
    (3)四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有( )人是同一月出生的。 4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是( )數(shù)。
    2、選擇
    (1)5個(gè)人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。 a、60 b、61 c、62 d、59
    (2)3種商品的總價(jià)是13元,每種商品的價(jià)格都是整數(shù),至少有一種商品的價(jià)格不低于( )元。 a、3 b、4 c、5 d、無法確定
    3、幼兒園老師準(zhǔn)備把15本圖畫書分給14個(gè)小朋友,結(jié)果是什么?
    完成課本練習(xí)十二第2、4題。
    板書
    抽屜原理
    物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜至少放進(jìn)(商+1)物體。
    抽屜原理教學(xué)設(shè)計(jì)篇八
    導(dǎo)學(xué)內(nèi)容:p70——71例1、例2,完成做一做及練習(xí)十二1、2題
    1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。
    2、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
    導(dǎo)學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    導(dǎo)學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    預(yù)習(xí)學(xué)案
    同學(xué)們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?
    導(dǎo)學(xué)案
    通過今天的學(xué)習(xí),你想知道些什么?
    自主操作探究新知
    (一)活動(dòng)1
    課件出示:
    把3本書進(jìn)2個(gè)抽屜中,有幾種方法?請(qǐng)同學(xué)們放一放,再把你的想法在小組內(nèi)交流。
    1、學(xué)生動(dòng)手操作,師巡視,了解情況。
    2、匯報(bào)交流說理活動(dòng)
    你們有什么發(fā)現(xiàn)?誰能說說看?
    根據(jù)學(xué)生的回答用數(shù)字在黑板上記錄。板書:(3,0)(2,1)(1,2,)(0,3)
    還可以用什么方法記錄?我把用圖記錄的用課件展示出來。
    ①再認(rèn)真觀察記錄,還有什么發(fā)現(xiàn)?
    (總有一個(gè)抽屜里至少有2本書。)
    ②怎樣放可以一次得出結(jié)論?(啟發(fā)學(xué)生用平均分的放法,引出用除法計(jì)算。)板書:3÷2=1(本)……1(本)
    ③這種方法是不是很快就能確定總有一個(gè)抽屜里至少有幾本書呢?(學(xué)生交流)
    ④把4本書放進(jìn)3個(gè)抽屜里呢?還用擺嗎?板書:4÷3=1(本)……1(本)
    ⑤課件出示:把6本書放進(jìn)5個(gè)抽屜呢?
    把7本書放進(jìn)6個(gè)抽屜呢?
    把10本書放進(jìn)9個(gè)抽屜呢?
    把100本書放進(jìn)99個(gè)抽屜呢?
    板書:7÷6=1(本)……1(本)
    10÷9=1(本)……1(本)
    100÷99=1(本)……1(本)
    ⑥觀察這些算式你發(fā)現(xiàn)了什么規(guī)律?
    預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù)
    師:是不是這個(gè)規(guī)律呢?我們來試一試吧!
    3、深化探究得出結(jié)論
    課件出示:7只鴿子飛回5個(gè)鴿籠,至少有兩只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?
    ①學(xué)生活動(dòng)
    ②交流說理活動(dòng)
    ③到底是“商加余數(shù)”還是“商加1”?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。
    ④誰能說清楚?板書:5÷3=1(只)……2(只)至少數(shù)=商+1
    (二)活動(dòng)二
    課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    分組操作后匯報(bào)
    板書:5÷2=2(本)……1(本)
    7÷2=3(本)……1(本)
    9÷2=4(本)……1(本)
    那么探究到現(xiàn)在,大家認(rèn)為怎樣才能確定總有一個(gè)抽屜至少有幾本書?
    (至少數(shù)=商+1)
    我同意大家的討論。我們這個(gè)發(fā)現(xiàn)就是有趣的`“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)德國數(shù)學(xué)家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實(shí)際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
    靈活應(yīng)用解決問題
    1、解釋課前提出的游戲問題。
    2、8只鴿子飛回3個(gè)鴿舍,不管怎樣分,總有一個(gè)鴿舍至少有幾只鴿子?
    3、任意13人中,至少有兩人的出生月份相同。為什么?
    4、任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。為什么?
    暢談感受:同學(xué)們,今天這節(jié)課有什么感受?
    課堂檢測(cè)
    1、7只鴿子飛進(jìn)5個(gè)鴿舍,至少有( )只鴿子要飛進(jìn)同伴的鴿舍里。
    2、有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放( )本書。
    3、四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有( )人是同一月出生的。
    4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是( )數(shù)。
    1、5個(gè)人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。
    a、60 b、61 c、62 d、59
    2、3種商品的總價(jià)是13元,每種商品的價(jià)格都是整數(shù),至少有一種商品的價(jià)格不低于( )元。
    a、3 b、4 c、5 d、無法確定
    1、現(xiàn)有5把鎖的各1把鑰匙混在一起跟鎖對(duì)不上號(hào)了,請(qǐng)問最少試幾次就可能全部對(duì)上號(hào)?
    2、六、一班四組有男女同學(xué)各5名,把他們的名字分別用10個(gè)數(shù)字代替,至少要點(diǎn)幾個(gè)數(shù)字,才能保證叫到兩名男生或兩名女生?
    課后拓展
    1、六、二班有學(xué)生35人,李老師至少要準(zhǔn)備多少本練習(xí)本,才能保證有一個(gè)人的練習(xí)本在兩本或兩本以上?
    2、從1、2、3……100,這100個(gè)連續(xù)自然數(shù)中,任意取出51個(gè)不相同的數(shù),其中必有兩個(gè)數(shù)互質(zhì),這是為什么呢?
    板書設(shè)計(jì)
    抽屜原理
    5÷2=2……1至少有3只
    7÷2=3……1至少有4只
    9÷2=4……1至少有5只
    11÷2=5……1至少有6只
    至少數(shù)=商數(shù)+1
    抽屜原理教學(xué)設(shè)計(jì)篇九
    1.理解最簡單的抽屜原理及抽屜原理的一般形式。
    2.引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究。
    經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。
    體會(huì)數(shù)學(xué)知識(shí)在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識(shí)和能力。
    經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    (一)教學(xué)例1
    1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?
    師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的`情況,師出示各種情況。
    板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?
    引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。
    問題:
    (1)“總有”是什么意思?(一定有)
    (2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)
    教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?
    學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。
    問題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)
    抽屜原理教學(xué)設(shè)計(jì)篇十
    1.使學(xué)生能理解抽取問題中的一些基本原理,并能解決有關(guān)簡單的問題。
    2.體會(huì)數(shù)學(xué)與日常生活的聯(lián)系,了解數(shù)學(xué)的價(jià)值,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。
    一、創(chuàng)設(shè)情境,復(fù)習(xí)舊知
    1、出示復(fù)習(xí)題:
    師:老師這兒有一個(gè)問題,不知道哪位同學(xué)能幫助解答一下?
    2、課件出示:把3個(gè)蘋果放進(jìn)2個(gè)抽屜里,總有一個(gè)抽屜至少放2個(gè)蘋果,為什么?
    3、學(xué)生自由回答。
    二、教學(xué)例2
    1、出示:盒子里有同樣大小的紅球和藍(lán)球各4個(gè)。要想摸出的球一定有2個(gè)同色的,最少要摸出幾個(gè)球?
    (1)組織學(xué)生讀題,理解題意。
    教師:你們能猜出結(jié)果嗎?
    組織學(xué)生猜一猜,并相互交流。
    指名學(xué)生匯報(bào)。
    學(xué)生匯報(bào)時(shí)可能會(huì)答出:只摸4個(gè)球就可以了,至少要摸出5個(gè)球……
    教師:能驗(yàn)證嗎?
    教師拿出準(zhǔn)備好的紅球及藍(lán)球,組織學(xué)生到講臺(tái)前來動(dòng)手摸一摸,驗(yàn)證匯報(bào)結(jié)果的正確性。
    (2)教師:剛才我們通過驗(yàn)證的方法得出了結(jié)論,聯(lián)系前面所學(xué)的知識(shí),這是一個(gè)什么問題?
    2、組織學(xué)生議一議,并相互交流。再指名學(xué)生匯報(bào)。
    教師:上面的問題是一個(gè)抽屜問題,請(qǐng)同學(xué)們找一找:“抽屜”是什么?“抽屜”有幾個(gè)?
    組織學(xué)生議一議,并相互交流。
    指名學(xué)生匯報(bào),使學(xué)生明確:抽屜就是顏色數(shù)。(板書)
    教師:能用例1的知識(shí)來解答嗎?
    組織學(xué)生議一議,并相互交流。
    指名學(xué)生匯報(bào)。
    使學(xué)生明確:只要分的`物體比抽屜多,就能保證總有一個(gè)抽屜至少放蕩2個(gè)球,因此要保證摸出兩個(gè)同色的球,摸出球的數(shù)量至少要比顏色的種數(shù)多一。
    (3)組織學(xué)生對(duì)例題的解答過程議一議,相互交流,理解解決問題的方法。
    學(xué)生不難發(fā)現(xiàn):只要摸出的球比它們的顏色種數(shù)多1,就能保證有兩個(gè)球同色。
    3、做一做
    第1題。
    1、獨(dú)立思考,判斷正誤。
    2、同學(xué)交流,說明理由。其中“370名學(xué)生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學(xué)生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導(dǎo)學(xué)生把“生日問題”轉(zhuǎn)化成“抽屜問題”。因?yàn)橐荒曛凶疃嘤?66天,如果把這366天看作366個(gè)抽屜,把370個(gè)學(xué)生放進(jìn)366個(gè)抽屜,人數(shù)大于抽屜數(shù),因此總有一個(gè)抽屜里至少有兩個(gè)人,即他們的生日是同一天。而一年中有12個(gè)月,如果把這12個(gè)月看作12個(gè)抽屜,把49個(gè)學(xué)生放進(jìn)12個(gè)抽屜,49÷12=4……1,因此,總有一個(gè)抽屜里至少有5(即4+1)個(gè)人,也就是他們的生日在同一個(gè)月。
    三鞏固練習(xí)
    完成課文練習(xí)十二第1、3題。
    四、總結(jié)評(píng)價(jià)
    1、師:這節(jié)課你有哪些收獲或感想?
    五、布置作業(yè)
    1.做一做。把紅、黃、藍(lán)三種顏色的小棒各10根混在一起。如果讓你閉上眼睛,每次最少拿出幾根才能保證一定有2根同色的小棒?保證有2對(duì)同色的小棒呢?
    2.試一試。給下面每個(gè)格子涂上紅色或藍(lán)色。觀察每一列,你有什么發(fā)現(xiàn)?如果只涂兩列的話,結(jié)論有什么變化呢?
    3、拓展練習(xí)(選做)
    (1)任意給出5個(gè)非0的自然數(shù)。有人說一定能找到3個(gè)數(shù),讓這3個(gè)數(shù)的和是3的倍數(shù)。你信不信?
    (2)把1~8這8個(gè)數(shù)任意圍成一個(gè)圓圈。在這個(gè)圈上,一定有3個(gè)相鄰的數(shù)之和大于13。你知道其中的奧秘嗎?
    抽屜原理教學(xué)設(shè)計(jì)篇十一
    【教學(xué)內(nèi)容】
    《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》六年級(jí)下冊(cè)第68頁。
    【教學(xué)目標(biāo)】
    1.經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理,會(huì)用抽屜原理解決簡單的實(shí)際問題。
    2. 通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    3. 通過抽屜原理的靈活應(yīng)用感受數(shù)學(xué)的魅力。
    【教學(xué)重點(diǎn)】
    經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。
    【教學(xué)難點(diǎn)】
    理解抽屜原理,并對(duì)一些簡單實(shí)際問題加以模型化。
    【教具、學(xué)具準(zhǔn)備】
    每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。
    【教學(xué)過程】
    一、課前游戲引入。
    師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來,誰愿來?(學(xué)生上來后)
    師:聽清要求 ,老師說開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。
    師:開始。
    師:都坐下了嗎?
    生:坐下了。
    師:我沒有看到他們坐的情況,但是我敢肯定地說:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)我說得對(duì)嗎?
    生:對(duì)!
    師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。下面我們開始上課,可以嗎?
    【點(diǎn)評(píng)】教師從學(xué)生熟悉的搶椅子游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,為后面開展教與學(xué)的活動(dòng)做了鋪墊。
    二、通過操作,探究新知
    (一)教學(xué)例1
    1.出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?
    師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況 (3,0) (2,1)
    【點(diǎn)評(píng)】此處設(shè)計(jì)教師注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極參與進(jìn)來。
    師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?
    生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?
    是:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。
    師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))
    師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。
    (4,0,0)
    (3,1,0)
    (2,2,0)
    (2,1,1),
    師:還有不同的放法嗎?
    生:沒有了。
    師:你能發(fā)現(xiàn)什么?
    生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:總有是什么意思?
    生:一定有
    師:至少有2枝什么意思?
    生:不少于兩只,可能是2枝,也可能是多于2枝?
    師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗(yàn)感受)
    師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論呢?
    學(xué)生思考組內(nèi)交流匯報(bào)
    師:哪一組同學(xué)能把你們的想法匯報(bào)一下?
    組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。
    師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)
    師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?
    師:這種分法,實(shí)際就是先怎么分的?
    生眾:平均分
    師:為什么要先平均分?(組織學(xué)生討論)
    生1:要想發(fā)現(xiàn)存在著總有一個(gè)盒子里一定至少有2枝,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)總有一個(gè)盒子里一定至少有2枝。
    生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?
    師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說一說)
    師:哪位同學(xué)能把你的想法匯報(bào)一下,
    生:(一邊演示一邊說)5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?
    生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:把7枝筆放進(jìn)6個(gè)盒子里呢?
    把8枝筆放進(jìn)7個(gè)盒子里呢?
    把9枝筆放進(jìn)8個(gè)盒子里呢?
    :
    你發(fā)現(xiàn)什么?
    生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
    師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
    【點(diǎn)評(píng)】教師關(guān)注了抽屜原理的最基本原理,物體個(gè)數(shù)必須要多于抽屜個(gè)數(shù),化繁為簡,此處確實(shí)有必要提領(lǐng)出來進(jìn)行教學(xué)。在學(xué)生自主探索的基礎(chǔ)上,教師注意引導(dǎo)學(xué)生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。通過教師組織開展的扎實(shí)有效的教學(xué)活動(dòng),學(xué)生學(xué)的有興趣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    2.解決問題。
    (1)課件出示:5只鴿子飛回4個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?
    (學(xué)生活動(dòng)獨(dú)立思考 自主探究)
    (2)交流、說理活動(dòng)。
    師:誰能說說為什么?
    生1:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。
    生2:我們也是這樣想的。
    生3:把5只鴿子平均分到4個(gè)籠子里,每個(gè)籠子1只,剩下1只,放到任何一個(gè)籠子里,就能保證至少有2只鴿子飛進(jìn)同一個(gè)籠里。
    生4:可以用54=11,余下的1只,飛到任何一個(gè)鴿籠里都能保證至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里,所以,至少有2只鴿子飛進(jìn)同一個(gè)籠里的結(jié)論是正確的。
    師:許多同學(xué)沒有再擺學(xué)具,證明這個(gè)結(jié)論是正確的,用的什么方法?
    生:用平均分的方法,就能說明存在總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里。
    師:同意嗎?(生:同意)老師把這位同學(xué)說的算式寫下來,(板書:54=11)
    師:同位之間再說一說,對(duì)這種方法的理解。
    師:現(xiàn)在誰能說說你對(duì)總有一個(gè)鴿籠里至少飛進(jìn)2只鴿子的理解
    生:我們發(fā)現(xiàn)這是必然存在的一個(gè)現(xiàn)象,不管鴿子怎樣飛回鴿籠,一定會(huì)有一個(gè)鴿籠里至少有2只鴿子。
    師:同學(xué)們都有這個(gè)發(fā)現(xiàn)嗎?
    生眾:發(fā)現(xiàn)了。
    師:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮砜催@樣一組問題。
    (二)教學(xué)例2
    1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    (留給學(xué)生思考的空間,師巡視了解各種情況)
    2.學(xué)生匯報(bào)。
    生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。
    板書:5本 2個(gè) 2本 余1本 (總有一個(gè)抽屜里至有3本書)
    7本 2個(gè) 3本 余1本(總有一個(gè)抽屜里至有4本書)
    9本 2個(gè) 4本 余1本(總有一個(gè)抽屜里至有5本書)
    師:2本、3本、4本是怎么得到的?生答完成除法算式。
    52=2本1本(商加1)
    72=3本1本(商加1)
    92=4本1本(商加1)
    師:觀察板書你能發(fā)現(xiàn)什么?
    生1:總有一個(gè)抽屜里的至少有2本只要用 商+ 1就可以得到。
    師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    生:總有一個(gè)抽屜里的至少有3本只要用53=1本2本,用商+ 2就可以了。
    生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。
    師:到底是商+1還是商+余數(shù)呢?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。
    交流、說理活動(dòng):
    生1:我們組通過討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。
    生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是總有一個(gè)抽屜里至少有2本書。
    生3∶我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書用商加1就可以了,不是商加2。
    師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?
    生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)總有一個(gè)抽屜里至少有商加1本書了。
    師:同學(xué)們同意吧?
    師:同學(xué)們的這一發(fā)現(xiàn),稱為抽屜原理, 抽屜原理又稱鴿籠原理,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的`,所以又稱狄里克雷原理,也稱為鴿巢原理。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用。抽屜原理的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
    3.解決問題。71頁第3題。(獨(dú)立完成,交流反饋)
    小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個(gè)小游戲。
    【點(diǎn)評(píng)】在這一環(huán)節(jié)的教學(xué)中教師抓住了假設(shè)法最核心的思路就是用有余數(shù)除法 形式表示出來,使學(xué)生學(xué)生借助直觀,很好的理解了如果把書盡量多地平均分給各個(gè)抽屜里,看每個(gè)抽屜里能分到多少本書,余下的書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里比平均分得的書的本數(shù)多1本。特別是對(duì)某個(gè)抽屜至少有書的本數(shù)是除法算式中的商加1, 而不是商加余數(shù),教師適時(shí)挑出針對(duì)性問題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了抽屜原理。
    三、應(yīng)用原理解決問題
    師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?
    生:2張/因?yàn)?4=11
    師:先驗(yàn)證一下你們的猜測(cè):舉牌驗(yàn)證。
    師:如有3張同花色的,符合你們的猜測(cè)嗎?
    師:如果9個(gè)人每一個(gè)人抽一張呢?
    生:至少有3張牌是同一花色,因?yàn)?4=21
    四、全課小結(jié)
    【點(diǎn)評(píng)】當(dāng)學(xué)生利用有余數(shù)除法解決了具體問題后,教師引導(dǎo)學(xué)生總結(jié)歸納這一類抽屜問題的一般規(guī)律,使學(xué)生進(jìn)一步理解掌握了抽屜原理。
    抽屜原理教學(xué)設(shè)計(jì)篇十二
    《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角的教學(xué)內(nèi)容。這部分教材通過幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“抽屜原理”,使學(xué)生在理解“抽屜原理”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡單的實(shí)際問題加以“模型化”,會(huì)用“抽屜原理”加以解決。“抽屜原理”在生活中運(yùn)用廣泛,學(xué)生在生活中常常能遇到實(shí)例,但并不能有意識(shí)地從數(shù)學(xué)的角度來理解和運(yùn)用“抽屜原理”。教學(xué)中應(yīng)有意識(shí)地讓學(xué)生理解“抽屜原理”的“一般化模型”。
    六年級(jí)學(xué)生的邏輯思維能力、小組合作能力和動(dòng)手操作能力都有了較大的提高,加上已有的生活經(jīng)驗(yàn),很容易感受到用“抽屜原理”解決問題帶來的樂趣。激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,游戲,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建?!保箯?fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。
    1、使學(xué)生初步了解抽屜原理,運(yùn)用抽屜原理知識(shí)解決簡單的實(shí)際問題。
    2、使學(xué)生經(jīng)歷抽屜原理的探究過程,通過動(dòng)手操作、分析、推理等活動(dòng),發(fā)現(xiàn)、歸納、總結(jié)原理。
    3、使學(xué)生通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力;提高解決問題的能力和興趣。
    經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
    理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    游戲請(qǐng)5名同學(xué)到前面來,老師這有4張凳子,老師喊123開始,要求每位同學(xué)都必須坐在凳子上,引導(dǎo):5位同學(xué)坐在4張椅子上,不管怎么坐,總有一把凳子上至少坐兩個(gè)同學(xué)。
    我們剛才做了個(gè)小游戲,但小游戲蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理。今天我們就來研究這個(gè)有趣的數(shù)學(xué)原理——抽屜原理。
    [設(shè)計(jì)意圖:把抽象的數(shù)學(xué)知識(shí)與生活中的游戲有機(jī)結(jié)合起來,使教學(xué)從學(xué)生熟悉和喜愛的游戲引入,讓學(xué)生在已有生活經(jīng)驗(yàn)的基礎(chǔ)上初步感知抽象的“抽屜原理”,提高學(xué)生的學(xué)習(xí)興趣。]
    (一)活動(dòng)一
    1、出示題目:把4根小棒,放在3個(gè)杯子里,怎么放?有幾種不同的放法?
    (板書:小棒4杯子3)
    提出要求:把所有的`擺法都擺出來,看看你會(huì)有什么發(fā)現(xiàn)?
    (1)同桌之間互相合作,動(dòng)手?jǐn)[,把各種情況記錄下來。
    (2)指名一位同學(xué)展示不同擺法,教師板書。(4,0,0)(3,1,0)(2,2,0)(2,1,1),(3)引導(dǎo)學(xué)生觀察發(fā)現(xiàn):不管怎么放,總有一個(gè)杯子里至少有2根小棒。(板書:總有一個(gè)杯子里至少有)
    (4)師生共同理解“總有”“至少”有2枝什么意思?
    (5)明確:剛才同學(xué)們把所有擺法一一列舉出來,得到了這樣的結(jié)論,我們稱之為“枚舉法”。
    [設(shè)計(jì)意圖:學(xué)生通過自己動(dòng)手操作,在實(shí)驗(yàn)中、合作中、討論中發(fā)現(xiàn)規(guī)律,分析問題的形成,把動(dòng)腦思考與動(dòng)手操作相結(jié)合,獨(dú)立思考與小組合作相結(jié)合。讓同學(xué)之間互相幫助,相互提高,讓問題在學(xué)生的探究中得到解決。]
    2、要把6根小棒放進(jìn)5杯子里,你感覺會(huì)有什么結(jié)果呢?
    (1)啟發(fā)學(xué)生猜想結(jié)果
    把6根小棒放入五個(gè)杯子里,你感覺一下,不要?jiǎng)邮謹(jǐn)[,你感覺一下會(huì)有什么樣的結(jié)論?
    (2)引導(dǎo)學(xué)生選擇合適的方法
    提出要求:想一個(gè)快速而又簡單的方法,只擺一種情況,你就可以得到這個(gè)結(jié)論?
    (3)學(xué)生嘗試操作驗(yàn)證。
    (4)全班交流,操作演示。
    學(xué)生活動(dòng)后組織交流:先每個(gè)杯子擺一根,每個(gè)杯子放1跟,5個(gè)杯子,就已經(jīng)放了5根,還有1根不管怎么放,總有一個(gè)杯子至少有兩根小棒
    預(yù)設(shè):如遇到每個(gè)杯子擺兩根,有的杯子空的,這樣有說服力嗎?有的杯子還空著,要先把每個(gè)杯子都裝上小棒才行。
    (5)明確結(jié)論:把6根小棒放進(jìn)5個(gè)杯子里,不管怎么放,總有一個(gè)杯子里至少有2枝小棒。
    3、課件出示:
    把100根小棒放進(jìn)99個(gè)杯子呢?
    談話:要不要也準(zhǔn)備100根小棒和99根杯子呢?可以怎么辦?
    引導(dǎo)用假設(shè)法進(jìn)行思考:假設(shè)每個(gè)杯子放1跟,99個(gè)杯子,就已經(jīng)放了99根,還有1根不管怎么放,總有一個(gè)杯子至少有2根小棒。
    這也是數(shù)學(xué)中一種很重要的方法“假設(shè)法”。
    引導(dǎo)學(xué)生觀察小棒數(shù)和杯子數(shù),你有什么發(fā)現(xiàn)?
    明確:這里的小棒數(shù)都比杯子數(shù)多1,當(dāng)小棒數(shù)比杯子數(shù)多1時(shí),總有一個(gè)杯子至少放了兩根小棒。
    [設(shè)計(jì)意圖:注意鼓勵(lì)學(xué)生運(yùn)用已有的知識(shí)對(duì)新學(xué)習(xí)的內(nèi)容進(jìn)行聯(lián)想和猜測(cè),再通過實(shí)驗(yàn)和推理驗(yàn)證,培養(yǎng)學(xué)生良好的學(xué)習(xí)和思考習(xí)慣。在猜測(cè)的基礎(chǔ)上進(jìn)行實(shí)驗(yàn)和推理,從“枚舉法”到“假設(shè)法”,使學(xué)生受到研究方法和思維方式的訓(xùn)練,發(fā)展和提高自主學(xué)習(xí)的能力。]
    (二)活動(dòng)二
    談話:接下來,我們把數(shù)學(xué)書當(dāng)做物體數(shù)放入抽屜里,看看又有什么發(fā)現(xiàn)?
    課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    板書:書抽屜總有一個(gè)抽屜放入算式
    5235÷2=2……1
    抽屜原理教學(xué)設(shè)計(jì)篇十三
    :人教版六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角
    1、初步了解“抽屜原理”。
    2、引導(dǎo)學(xué)生用操作枚舉或假設(shè)的方法探究“抽屜原理”的一般規(guī)律。
    3、會(huì)用抽屜原理解決簡單的實(shí)際問題。
    4、經(jīng)歷從具體的抽象的探究過程,初步了解抽屜原理,提高學(xué)生又根據(jù)有條理的進(jìn)行思考和推理的能力,體會(huì)比較的學(xué)習(xí)方法。
    教學(xué)重點(diǎn):抽屜原理的理解和簡單應(yīng)用。
    教學(xué)難點(diǎn):找出實(shí)際問題與抽屜原理的內(nèi)在聯(lián)系。
    一、開展小游戲,引入新課。
    師:在我們上課之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來,誰愿來?
    師:聽清要求,老師說開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。
    師:開始。
    師:都坐下了嗎?
    生:坐下了。
    師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩位同學(xué)”我說得對(duì)嗎?
    生:對(duì)!
    師:想知道老師為什么會(huì)做出如此準(zhǔn)確的判斷嗎?其實(shí)這里面蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理——抽屜原理。
    二、實(shí)驗(yàn)探索
    第一步:研究4枝鉛筆放進(jìn)3個(gè)文具盒,有哪些不同的放法?你們又能從這些方法中發(fā)現(xiàn)什么有趣的現(xiàn)象?
    1、(出示)師:把4枝筆放進(jìn)3個(gè)文具盒,有哪些不同的放法?(請(qǐng)一生示范)你們又能從這些放法中發(fā)現(xiàn)什么有趣的現(xiàn)象?
    2、師:接下來,就請(qǐng)同學(xué)們以小組為單位進(jìn)行實(shí)驗(yàn)操作,并把放法和發(fā)現(xiàn)填在記錄卡上。
    放法
    文具盒1
    文具盒2
    文具盒3
    最多放幾枝
    a
    b
    c
    d
    我們的發(fā)現(xiàn)
    3、小組匯報(bào)交流。
    (4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)
    生:不管怎么放,總有1個(gè)文具盒里至少有2枝鉛筆。
    師:“總有”是什么意思?
    生:一定有。
    師:“至少”是什么意思?
    生:不少于2枝,可能是3枝或4枝。
    生小結(jié):把4枝鉛筆放進(jìn)3個(gè)文具盒,總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。(最多有2枝或2枝以上)
    4、師:把4枝筆飯放進(jìn)3個(gè)文具盒里,不管怎么放,總有一個(gè)文具盒里至少有2枝鉛筆。這是我們通過實(shí)際操作發(fā)現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論,找出至少數(shù)呢?
    生:我們發(fā)現(xiàn)如果每個(gè)文具盒里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)文具盒里,總有一個(gè)文具盒里至少有2枝鉛筆。
    (學(xué)生操作演示)
    師:這種分法,實(shí)際就是先怎么分的?
    生眾:平均分
    師:為什么要先平均分?
    生1:要想發(fā)現(xiàn)存在著“總有一個(gè)文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)文具盒里,一定會(huì)出現(xiàn)“總有一個(gè)文具盒里一定至少有2枝”。
    生2:這樣分,只分一次就能確定總有一個(gè)文具盒至少有幾枝筆了。
    把筆盡量每個(gè)文具盒里都放,還要盡量平均放。怎樣用算式表示呢?
    4÷3=1……11+1=2
    5、那照這樣的思路:把6枝鉛筆放進(jìn)5個(gè)文具盒,怎樣想?(用鉛筆操作演示)6÷5=1……11+1=2
    把7枝鉛筆放進(jìn)6個(gè)文具盒,怎樣想?……
    100枝鉛筆放進(jìn)99個(gè)文具盒呢?
    師提問:發(fā)現(xiàn)了什么規(guī)律?
    生小結(jié),師整理:鉛筆數(shù)比文具盒數(shù)多1,不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。(同桌之間說一說)
    第二步:研究鉛筆數(shù)比文具盒數(shù)不是多1的現(xiàn)象。
    1、師:研究到這兒,還想繼續(xù)研究嗎?還有哪些值得我們繼續(xù)研究的問題?(生自主提問:如不是多1,什么是抽屜原理等等。)
    2、師:如果鉛筆數(shù)比文具盒數(shù)不是多1,而是多2、3……,總有一個(gè)文具盒里至少會(huì)有幾枝鉛筆?
    (出示:把5本書放進(jìn)2個(gè)抽屜里,總有一個(gè)抽屜里至少會(huì)有幾本書呢?)
    生獨(dú)立思考,在小組內(nèi)交流,匯報(bào)。
    師:許多同學(xué)都沒有再擺學(xué)具,用的什么方法?
    生:平均分。把5本書平均分到2個(gè)抽屜里,每個(gè)抽屜里放2本書,還剩一本書,無論放在哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。生:5÷2=2……12+1=3
    (出示:5本書放進(jìn)3個(gè)抽屜呢?8本書放進(jìn)5個(gè)抽屜呢?)
    5÷3=1……21+1=28÷5=1……31+3=4
    師:至少數(shù)為什么不是“商+余數(shù)”?(小組討論,匯報(bào))
    4、對(duì)比觀察算式,你能發(fā)現(xiàn)求至少數(shù)的規(guī)律嗎?
    物體數(shù)÷抽屜數(shù)=商……余數(shù)至少數(shù)=商+1
    5、總結(jié)抽屜原理,運(yùn)用抽屜原理的關(guān)鍵是什么?(找準(zhǔn)物體數(shù)和抽屜數(shù)),閱讀相關(guān)資料。
    a÷n=b……c(c≠0)把a(bǔ)個(gè)物體放進(jìn)n個(gè)抽屜里,總有一個(gè)抽屜里至少放進(jìn)(b+1)個(gè)物體。
    三、應(yīng)用原理。
    1、請(qǐng)你試一試。(口答,指出什么是物體數(shù),什么是抽屜數(shù))
    (1)6只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一鴿舍,為什么?
    (2)把13只小兔關(guān)在5個(gè)籠中,至少有幾只兔子要關(guān)在同一個(gè)籠里?
    (3)有5袋餅干,每袋10快,發(fā)給6個(gè)小朋友,總有一個(gè)小朋友至少分到幾塊餅干?
    2、下面的說法對(duì)嗎?說說你的理由。
    向東小學(xué)6年級(jí)共有370名學(xué)生,其中六(2)班有49名學(xué)生。
    a、六年級(jí)里至少有2名學(xué)生的生日是同一天。
    (370個(gè)物體,366個(gè)抽屜)
    b、六(2)班只有5名學(xué)生的生日在同一月。
    (49個(gè)物體,12個(gè)抽屜,“只有”就是一定)
    c、六(2)至少有25位學(xué)生是同一性別。
    3、玩“猜?lián)淇恕钡挠螒颉?BR>    抽掉大小王,抽出5張牌,至少幾張是同花色?5÷4=1……11+1=2
    抽15張至少有幾張數(shù)字相同?15÷13=1……21+1=2
    4、學(xué)生把學(xué)生生活中能用抽屜原理解釋的現(xiàn)象寫下來。
    留心觀察+細(xì)心思考=偉大發(fā)現(xiàn)
    四、全課總結(jié)。
    抽屜原理教學(xué)設(shè)計(jì)篇十四
    1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。
    2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
    3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
    經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。
    一、問題引入。
    師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來,誰愿來?
    1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。
    2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說得對(duì)嗎?
    游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。
    引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。
    二、探究新知
    (一)教學(xué)例1
    1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?
    師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。
    板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
    問題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?
    引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。
    問題:
    (1)“總有”是什么意思?(一定有)
    (2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)
    教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?
    學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。
    問題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)
    總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。
    2.完成課下“做一做”,學(xué)習(xí)解決問題。
    問題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?
    (1)學(xué)生活動(dòng)—獨(dú)立思考自主探究
    (2)交流、說理活動(dòng)。
    引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。
    總結(jié):用平均分的方法,就能說明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。
    (二)教學(xué)例2
    1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?
    (留給學(xué)生思考的空間,師巡視了解各種情況)
    2.學(xué)生匯報(bào),教師給予表揚(yáng)后并總結(jié):
    總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。
    總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。
    問題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)
    引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對(duì)呢?(學(xué)生小組里進(jìn)行研究、討論。)
    總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。
    師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
    (三)學(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場(chǎng)景。
    三、解決問題
    四、全課小結(jié)