高三數(shù)學(xué)必修一復(fù)習(xí)知識點(diǎn)

字號:

仰望天空時,什么都比你高,你會自卑;俯視大地時,什么都比你低,你會自負(fù);只有放寬視野,把天空和大地盡收眼底,才能在蒼穹泛土之間找到你真正的位置。無須自卑,不要自負(fù),堅(jiān)持自信。高三頻道為你整理了《高三數(shù)學(xué)必修一復(fù)習(xí)知識點(diǎn)》,歡迎閱讀,祝愿天下所有的學(xué)子們都能取得好的成績!
    1.高三數(shù)學(xué)必修一復(fù)習(xí)知識點(diǎn)
    1、三類角的求法:
    ①找出或作出有關(guān)的角。
    ②證明其符合定義,并指出所求作的角。
    ③計(jì)算大小(解直角三角形,或用余弦定理)。
    2、正棱柱——底面為正多邊形的直棱柱
    正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。
    正棱錐的計(jì)算集中在四個直角三角形中:
    3、怎樣判斷直線l與圓C的位置關(guān)系?
    圓心到直線的距離與圓的半徑比較。
    直線與圓相交時,注意利用圓的“垂徑定理”。
    4、對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的值。
    不看后悔!清華揭秘學(xué)好高中數(shù)學(xué)的方法
    培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?
    (1)欣賞數(shù)學(xué)的美感
    比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……
    通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點(diǎn)的距離之差的絕對值為定值(小于兩個定點(diǎn)之間的距離)的點(diǎn)的集合。
    (2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。
    例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.
    學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.
    (3)采用靈活的教學(xué)手段,與時俱進(jìn)。
    利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。
    (4)適當(dāng)看一些科普類的書籍和文章。
    比如:學(xué)圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。
    2.高三數(shù)學(xué)必修一復(fù)習(xí)知識點(diǎn)
    一個推導(dǎo)
    利用錯位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:Sn=a1+a1q+a1q2+…+a1qn-1,
    同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
    兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
    兩個防范
    (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.
    (2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.
    三種方法
    等比數(shù)列的判斷方法有:
    (1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_,則{an}是等比數(shù)列.
    (2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_,則數(shù)列{an}是等比數(shù)列.
    (3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_,則{an}是等比數(shù)列.
    注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.
    3.高三數(shù)學(xué)必修一復(fù)習(xí)知識點(diǎn)
    1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
    2.判定兩個平面平行的方法:
    (1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
    (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
    (3)證明兩平面同垂直于一條直線。
    3.兩個平面平行的主要性質(zhì):
    (1)由定義知:“兩平行平面沒有公共點(diǎn)”;
    (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;
    (3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
    (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
    (5)夾在兩個平行平面間的平行線段相等;
    (6)經(jīng)過平面外一點(diǎn)只有一個平面和已知平面平行。
    4.高三數(shù)學(xué)必修一復(fù)習(xí)知識點(diǎn)
    一、綜述
    導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個方面:
    1.導(dǎo)數(shù)的常規(guī)問題:
    (1)刻畫函數(shù)(比初等方法精確細(xì)微);
    (2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);
    (3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。
    2.關(guān)于函數(shù)特征,值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求值要比初等方法快捷簡便。
    3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應(yīng)引起注意。
    二、知識整合
    1.導(dǎo)數(shù)概念的理解。
    2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的大值與小值。
    復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。
    3.要能正確求導(dǎo),必須做到以下兩點(diǎn):
    (1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
    (2)對于一個復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對哪個變量求導(dǎo)。
    5.高三數(shù)學(xué)必修一復(fù)習(xí)知識點(diǎn)
    1.坐標(biāo)系
    (1)回顧在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法,體會坐標(biāo)系的作用。
    (2)通過具體例子,了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況。
    (3)能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化。
    (4)能在極坐標(biāo)系中給出簡單圖形(如過極點(diǎn)的直線、過極點(diǎn)或圓心在極點(diǎn)的圓)的方程。通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,體會在用方程刻畫平面圖形時選擇適當(dāng)坐標(biāo)系的意義。
    2.參數(shù)方程
    (1)通過分析拋物運(yùn)動中時間與運(yùn)動物體位置的關(guān)系,寫出拋物運(yùn)動軌跡的參數(shù)方程,體會參數(shù)的意義。
    (2)分析直線、圓和圓錐曲線的幾何性質(zhì),選擇適當(dāng)?shù)膮?shù)寫出它們的參數(shù)方程。
    (3)舉例說明某些曲線用參數(shù)方程表示比用普通方程表示更方便,感受參數(shù)方程的優(yōu)越性。