高一下冊數(shù)學(xué)必修四知識點(diǎn)

字號:

高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識交叉多、綜合性強(qiáng),以及考查的知識和思維觸點(diǎn)廣的特點(diǎn),找尋一套行之有效的學(xué)習(xí)方法。今天為各位同學(xué)整理了《高一下冊數(shù)學(xué)必修四知識點(diǎn) 》,希望對您的學(xué)習(xí)有所幫助!
    1.高一下冊數(shù)學(xué)必修四知識點(diǎn)
    (1)兩個平面互相平行的定義:空間兩平面沒有公共點(diǎn)
    (2)兩個平面的位置關(guān)系:
    兩個平面平行-----沒有公共點(diǎn);兩個平面相交-----有一條公共直線。
    a、平行
    兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
    兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
    b、相交
    二面角
    (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
    (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
    (3)二面角的棱:這一條直線叫做二面角的棱。
    (4)二面角的面:這兩個半平面叫做二面角的面。
    (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
    (6)直二面角:平面角是直角的二面角叫做直二面角。
    兩平面垂直
    兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
    兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直
    兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。
    多面體
    棱柱
    棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
    棱柱的性質(zhì)
    (1)側(cè)棱都相等,側(cè)面是平行四邊形
    (2)兩個底面與平行于底面的截面是全等的多邊形
    (3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
    棱錐
    棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
    棱錐的性質(zhì):
    (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
    (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
    正棱錐
    正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質(zhì):
    (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (3)多個特殊的直角三角形
    a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
    2.高一下冊數(shù)學(xué)必修四知識點(diǎn)
    反比例函數(shù)
    形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
    自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
    反比例函數(shù)圖像性質(zhì):
    反比例函數(shù)的圖像為雙曲線。
    由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。
    另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
    上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。
    當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
    當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
    反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
    知識點(diǎn):
    1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
    2.對于雙曲線y=k/x,若在分母上加減任意一個實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
    3.高一下冊數(shù)學(xué)必修四知識點(diǎn)
    1.“包含”關(guān)系—子集
    注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
    實(shí)例:設(shè)A={xx2-1=0}B={-1,1}“元素相同”
    結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
    ①任何一個集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同時BíA那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
    4.高一下冊數(shù)學(xué)必修四知識點(diǎn)
    考點(diǎn)一、映射的概念
    1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多
    2.映射:設(shè)A和B是兩個非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng)。包括:一對一多對一
    考點(diǎn)二、函數(shù)的概念
    1.函數(shù):設(shè)A和B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。
    2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系。這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù)。
    3.區(qū)間的概念:設(shè)a,bR,且a
    ①(a,b)={xa
    ⑤(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx
    考點(diǎn)三、函數(shù)的表示方法
    1.函數(shù)的三種表示方法列表法圖象法解析法
    2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點(diǎn):
    ①分段函數(shù)是一個函數(shù),不要誤認(rèn)為是幾個函數(shù)。
    ②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
    考點(diǎn)四、求定義域的幾種情況
    ①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
    ②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
    ③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
    ④若f(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。
    ⑤.因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時為零。
    ⑥若f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
    ⑦若f(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
    5.高一下冊數(shù)學(xué)必修四知識點(diǎn)
    空間中的垂直關(guān)系
    1、直線與平面垂直
    定義:直線與平面內(nèi)任意一條直線都垂直
    判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
    性質(zhì):垂直于同一直線的兩平面平行
    推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
    直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
    2、平面與平面垂直
    定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
    判定:一個平面過另一個平面的垂線,則這兩個平面垂直
    性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直