鋼板被廣泛用于諸如建筑、橋梁、壓力容器、儲罐、管線和船舶等基礎建設和大型建筑中。建筑構件的大型化和高層化發(fā)展趨勢要求鋼板的厚度增加,同時具有更高的綜合性能,包括更高的力學性能、高效的加工性能以及優(yōu)良的抗腐蝕性能和抗疲勞破壞性能等。
但是,隨著鋼板強度的提高,其沖擊韌度和焊接性能顯著下降,焊接裂紋敏感性增加。特別是隨著焊接線能量的提高,傳統(tǒng)低合金高強鋼的焊接熱影響區(qū)性能(強度、韌性)惡化,易產生焊接冷裂紋問題,給大型鋼結構的制造帶來困難。由于焊接為厚板加工的主要方式,滿足大線能量焊接性能也逐步成為各種鋼種所具備的一種性能。所以,在追求高強度的同時,改善鋼板的韌性以提高鋼板的焊接性能越來越迫切。
本文綜述了大線能量焊接用結構鋼的研究進展。
提高鋼大線能量焊接性能的主要技術手段
鋼大線能量焊接的主要難點在于其熱影響區(qū)(HAZ)的強度和韌性隨著輸入線能量的增大而降低。因此,HAZ的韌性成為制約鋼大線能量焊接的關鍵因素。為了解決HAZ的韌性問題,國內外相繼開展了大線能量焊接用鋼的研究工作,提出的改善韌性的方法主要有降低C含量和Ceq、利用微合金元素和氧化物夾雜細化奧氏體晶粒、獲得韌性好的組織如針狀鐵素體以及貝氏體組織的超低碳鋼、通過改進生產工藝提高韌性等。
1 奧氏體晶粒的細化
晶粒細化是同時提高鋼的強度和韌性的途徑。通過降低奧氏體的晶粒尺寸來增加形核點密度以細化鐵素體晶粒的方法已經被廣泛研究。原奧氏體晶粒越細小,HAZ的晶粒也就越小,韌性也就會越好。
在鋼中引入微量的合金元素,形成彌散分布的高熔點顆粒。這些顆粒一方面以“釘軋”的形式阻礙奧氏體晶界的遷移,限制奧氏體晶粒的長大,同時增加了相變過程中的形核點,從而使鋼的組織更加細小。目前研究較多的是Ti元素對高溫奧氏體的細化作用。研究發(fā)現(xiàn),Ti在鋼中形成細小彌散的TiN粒子,在焊接熱循環(huán)過程中有效阻止奧氏體晶粒的長大,促進針狀鐵素體析出,從而改善HAZ的韌性。
研究人員發(fā)現(xiàn),Nb可以加強Ti的細化作用。Nb在鋼中與N也有著強烈的親和力,可以取代部分Ti,與N形成(Ti,Nb)N顆粒,其溶解溫度在1350℃以上,可以釘軋、拖拽高溫奧氏體晶界的遷移。進一步的研究發(fā)現(xiàn),Ti-Nb微合金鋼中含有大量尺寸細小的TixNb1-x(CyN1-x)粒子,粒子中Nb的相對含量在0.25~0.82之間,形狀接近球形。這些粒子具有很高的穩(wěn)定性,在焊接過程中這些粒子不僅能有效地阻止奧氏體晶粒長大、抑制粗大貝氏體的形成、還能夠促進針狀鐵素體的析出和M-A組元的分解,從而顯著改善低合金高強鋼HAZ粗晶區(qū)的韌性。
2 HAZ組織的改善
除了細化晶粒,改善HAZ組織也是提高鋼板韌性的一個途徑。當成分確定時,鋼的韌性由組織和晶粒尺寸決定。研究結果表明,當大線能量焊接后的HAZ含有一定數(shù)量的針狀鐵素體(AF)時,將具有較高的強度和良好的韌性,所以很多研究都致力于在HAZ獲得AF組織,并對AF的形核機理和合金元素對組織的影響做了探討分析。
3 添加合金元素控制鋼的顯微組織
通過添加微量合金元素,可改善鋼板的韌性,提高焊接性能。合金元素在鋼中形成細小的化合物顆粒,不僅細化晶粒,還充當AF的形核質點,形成更多的AF組織,或是降低有害夾雜的含量,從而提高材料的韌性。Ti、Nb、V的研究較多,此外Ni、Mn、Al、Si、Mo、B、Cu和RE等元素也有類似的效果。
研究表明,鋼中加Ti有利于韌性的提高。TiN粒子能夠促進針狀鐵素體析出。由于TiN粒子與鐵素體的錯配度較小,雙方保持共格關系,從而有利于鐵素體晶核的長大。也有分析認為這與膨脹系數(shù)有關。因為TiN與奧氏體的膨脹系數(shù)不同,在TiN粒子周圍產生較大的晶格畸變,畸變區(qū)有大量的位錯,為鐵素體的形核提供了位置;同時,畸變促進了C原子的擴散,還為鐵素體形核提供了激活能。
Nb可以在不損失韌性的情況下提高強度。試驗表明,加入0.02%的Nb即可使強度提高而韌性不降低。有研究認為,Ti、Nb復合微合金化中,加入的Nb部分固溶于奧氏體基體抑制奧氏體晶粒的長大;同時,化合態(tài)的Nb可以減少凝固期間形成的粗大富Ti的碳氮化物,增加釘軋粒子的體積分數(shù);也可能是形成(Ti,Nb)N降低了粒子的熔點,從而使得第二相粒子在比固相線更低的溫度析出,但具有更高的粗化溫度,從而具有更細小的尺寸。
Mn是防止熱裂紋的有益元素。有研究發(fā)現(xiàn),Mn的存在改善了硫化物的分布形態(tài),使薄膜狀的低熔點化合物FeS改變?yōu)榍驙?,并置換FeS形成MnS,從而減少了低熔點硫化物的數(shù)量;而Ti在焊接過程中也形成高熔點的硫化物,提高了焊縫的抗裂性。
適量的Al能改善HAZ的低溫韌性,還有研究者發(fā)現(xiàn),鋼中同時加入Ti更有效。隨著Al的加入,鋼中M-A島數(shù)量減少,其平均長度減少,并且M-A中殘余奧氏體數(shù)量增加,從而提高HAZ的韌性。加入Ti后,HAZ中有相當多的TiN質點,并有MnS依附于TiN質點析出的現(xiàn)象。
Mo能夠有效降低Bs溫度。ULCB鋼中Mo和B共同作用能夠使鐵素體析出線明顯右移,使得在較寬的冷卻速度范圍內獲得完全的貝氏體組織。這樣,在較大的線能量范圍內,HAZ的組織沒有變化,從而保持了良好的韌性。當Mo增加時,鋼的強度明顯提高。另外,Mo和Mn還能增大Nb(CN)在奧氏體中的溶解度,從而降低TMCP工藝的再加熱溫度、軋制溫度及再結晶終止溫度。
Ni是能夠增加基體金屬韌性并改善強化而不惡化HAZ韌性的元素,隨著Ni的加入,強度和韌性都有改善。尤其在ε-Cu時效強化ULCB鋼中,加入0.5~2倍的Ni可以防止銅的熱脆性,通常1.5%是其上限。
B能減少焊縫中自由狀態(tài)的N,提高HAZ粗晶區(qū)的韌性。TiN粒子在溫度超過1450℃時易熔解,產生的自由N原子對HAZ韌性不利。B與N結合形成BN,從而改善韌性。
Re2O3對熔敷金屬中的夾雜物有球化、細化作用,提高HAZ的韌性。在焊劑中加入適量的Re2O3后,夾雜物數(shù)量減少。而且,REM在鋼中形成穩(wěn)定細小的O、S化物,一方面取代TiN顆粒抑制奧氏體晶粒的粗化,還充當鐵素體的形核核心阻止上貝氏體的形成。
在焊口中加入Cr粉能增加AF的數(shù)量,但削弱沖擊韌度。不同的合金成分下,隨著Cr量的增加AF有不同程度的增加,但進一步增加Cr量,AF將被FS(ferritewithsecondphase)取代。國外有研究者認為Cr量的增加將減少(通常抑制)PF(primaryferrite)的形核,因為在AF晶內形核前貝氏體已經可以在晶界自由形核。
但是,隨著鋼板強度的提高,其沖擊韌度和焊接性能顯著下降,焊接裂紋敏感性增加。特別是隨著焊接線能量的提高,傳統(tǒng)低合金高強鋼的焊接熱影響區(qū)性能(強度、韌性)惡化,易產生焊接冷裂紋問題,給大型鋼結構的制造帶來困難。由于焊接為厚板加工的主要方式,滿足大線能量焊接性能也逐步成為各種鋼種所具備的一種性能。所以,在追求高強度的同時,改善鋼板的韌性以提高鋼板的焊接性能越來越迫切。
本文綜述了大線能量焊接用結構鋼的研究進展。
提高鋼大線能量焊接性能的主要技術手段
鋼大線能量焊接的主要難點在于其熱影響區(qū)(HAZ)的強度和韌性隨著輸入線能量的增大而降低。因此,HAZ的韌性成為制約鋼大線能量焊接的關鍵因素。為了解決HAZ的韌性問題,國內外相繼開展了大線能量焊接用鋼的研究工作,提出的改善韌性的方法主要有降低C含量和Ceq、利用微合金元素和氧化物夾雜細化奧氏體晶粒、獲得韌性好的組織如針狀鐵素體以及貝氏體組織的超低碳鋼、通過改進生產工藝提高韌性等。
1 奧氏體晶粒的細化
晶粒細化是同時提高鋼的強度和韌性的途徑。通過降低奧氏體的晶粒尺寸來增加形核點密度以細化鐵素體晶粒的方法已經被廣泛研究。原奧氏體晶粒越細小,HAZ的晶粒也就越小,韌性也就會越好。
在鋼中引入微量的合金元素,形成彌散分布的高熔點顆粒。這些顆粒一方面以“釘軋”的形式阻礙奧氏體晶界的遷移,限制奧氏體晶粒的長大,同時增加了相變過程中的形核點,從而使鋼的組織更加細小。目前研究較多的是Ti元素對高溫奧氏體的細化作用。研究發(fā)現(xiàn),Ti在鋼中形成細小彌散的TiN粒子,在焊接熱循環(huán)過程中有效阻止奧氏體晶粒的長大,促進針狀鐵素體析出,從而改善HAZ的韌性。
研究人員發(fā)現(xiàn),Nb可以加強Ti的細化作用。Nb在鋼中與N也有著強烈的親和力,可以取代部分Ti,與N形成(Ti,Nb)N顆粒,其溶解溫度在1350℃以上,可以釘軋、拖拽高溫奧氏體晶界的遷移。進一步的研究發(fā)現(xiàn),Ti-Nb微合金鋼中含有大量尺寸細小的TixNb1-x(CyN1-x)粒子,粒子中Nb的相對含量在0.25~0.82之間,形狀接近球形。這些粒子具有很高的穩(wěn)定性,在焊接過程中這些粒子不僅能有效地阻止奧氏體晶粒長大、抑制粗大貝氏體的形成、還能夠促進針狀鐵素體的析出和M-A組元的分解,從而顯著改善低合金高強鋼HAZ粗晶區(qū)的韌性。
2 HAZ組織的改善
除了細化晶粒,改善HAZ組織也是提高鋼板韌性的一個途徑。當成分確定時,鋼的韌性由組織和晶粒尺寸決定。研究結果表明,當大線能量焊接后的HAZ含有一定數(shù)量的針狀鐵素體(AF)時,將具有較高的強度和良好的韌性,所以很多研究都致力于在HAZ獲得AF組織,并對AF的形核機理和合金元素對組織的影響做了探討分析。
3 添加合金元素控制鋼的顯微組織
通過添加微量合金元素,可改善鋼板的韌性,提高焊接性能。合金元素在鋼中形成細小的化合物顆粒,不僅細化晶粒,還充當AF的形核質點,形成更多的AF組織,或是降低有害夾雜的含量,從而提高材料的韌性。Ti、Nb、V的研究較多,此外Ni、Mn、Al、Si、Mo、B、Cu和RE等元素也有類似的效果。
研究表明,鋼中加Ti有利于韌性的提高。TiN粒子能夠促進針狀鐵素體析出。由于TiN粒子與鐵素體的錯配度較小,雙方保持共格關系,從而有利于鐵素體晶核的長大。也有分析認為這與膨脹系數(shù)有關。因為TiN與奧氏體的膨脹系數(shù)不同,在TiN粒子周圍產生較大的晶格畸變,畸變區(qū)有大量的位錯,為鐵素體的形核提供了位置;同時,畸變促進了C原子的擴散,還為鐵素體形核提供了激活能。
Nb可以在不損失韌性的情況下提高強度。試驗表明,加入0.02%的Nb即可使強度提高而韌性不降低。有研究認為,Ti、Nb復合微合金化中,加入的Nb部分固溶于奧氏體基體抑制奧氏體晶粒的長大;同時,化合態(tài)的Nb可以減少凝固期間形成的粗大富Ti的碳氮化物,增加釘軋粒子的體積分數(shù);也可能是形成(Ti,Nb)N降低了粒子的熔點,從而使得第二相粒子在比固相線更低的溫度析出,但具有更高的粗化溫度,從而具有更細小的尺寸。
Mn是防止熱裂紋的有益元素。有研究發(fā)現(xiàn),Mn的存在改善了硫化物的分布形態(tài),使薄膜狀的低熔點化合物FeS改變?yōu)榍驙?,并置換FeS形成MnS,從而減少了低熔點硫化物的數(shù)量;而Ti在焊接過程中也形成高熔點的硫化物,提高了焊縫的抗裂性。
適量的Al能改善HAZ的低溫韌性,還有研究者發(fā)現(xiàn),鋼中同時加入Ti更有效。隨著Al的加入,鋼中M-A島數(shù)量減少,其平均長度減少,并且M-A中殘余奧氏體數(shù)量增加,從而提高HAZ的韌性。加入Ti后,HAZ中有相當多的TiN質點,并有MnS依附于TiN質點析出的現(xiàn)象。
Mo能夠有效降低Bs溫度。ULCB鋼中Mo和B共同作用能夠使鐵素體析出線明顯右移,使得在較寬的冷卻速度范圍內獲得完全的貝氏體組織。這樣,在較大的線能量范圍內,HAZ的組織沒有變化,從而保持了良好的韌性。當Mo增加時,鋼的強度明顯提高。另外,Mo和Mn還能增大Nb(CN)在奧氏體中的溶解度,從而降低TMCP工藝的再加熱溫度、軋制溫度及再結晶終止溫度。
Ni是能夠增加基體金屬韌性并改善強化而不惡化HAZ韌性的元素,隨著Ni的加入,強度和韌性都有改善。尤其在ε-Cu時效強化ULCB鋼中,加入0.5~2倍的Ni可以防止銅的熱脆性,通常1.5%是其上限。
B能減少焊縫中自由狀態(tài)的N,提高HAZ粗晶區(qū)的韌性。TiN粒子在溫度超過1450℃時易熔解,產生的自由N原子對HAZ韌性不利。B與N結合形成BN,從而改善韌性。
Re2O3對熔敷金屬中的夾雜物有球化、細化作用,提高HAZ的韌性。在焊劑中加入適量的Re2O3后,夾雜物數(shù)量減少。而且,REM在鋼中形成穩(wěn)定細小的O、S化物,一方面取代TiN顆粒抑制奧氏體晶粒的粗化,還充當鐵素體的形核核心阻止上貝氏體的形成。
在焊口中加入Cr粉能增加AF的數(shù)量,但削弱沖擊韌度。不同的合金成分下,隨著Cr量的增加AF有不同程度的增加,但進一步增加Cr量,AF將被FS(ferritewithsecondphase)取代。國外有研究者認為Cr量的增加將減少(通常抑制)PF(primaryferrite)的形核,因為在AF晶內形核前貝氏體已經可以在晶界自由形核。