聚集索引的重要性和如何選擇聚集索引
在上一節(jié)的標題中,筆者寫的是:實現(xiàn)小數(shù)據(jù)量和海量數(shù)據(jù)的通用分頁顯示存儲過程。這是因為在將本存儲過程應用于“辦公自動化”系統(tǒng)的實踐中時,筆者發(fā)現(xiàn)這第三種存儲過程在小數(shù)據(jù)量的情況下,有如下現(xiàn)象:
1、分頁速度一般維持在1秒和3秒之間。
2、在查詢最后一頁時,速度一般為5秒至8秒,哪怕分頁總數(shù)只有3頁或30萬頁。
雖然在超大容量情況下,這個分頁的實現(xiàn)過程是很快的,但在分前幾頁時,這個1-3秒的速度比起第一種甚至沒有經(jīng)過優(yōu)化的分頁方法速度還要慢,借用戶的話說就是“還沒有ACCESS數(shù)據(jù)庫速度快”,這個認識足以導致用戶放棄使用您開發(fā)的系統(tǒng)。
筆者就此分析了一下,原來產(chǎn)生這種現(xiàn)象的癥結(jié)是如此的簡單,但又如此的重要:排序的字段不是聚集索引!
本篇文章的題目是:“查詢優(yōu)化及分頁算法方案”。筆者只所以把“查詢優(yōu)化”和“分頁算法”這兩個聯(lián)系不是很大的論題放在一起,就是因為二者都需要一個非常重要的東西――聚集索引。
在前面的討論中我們已經(jīng)提到了,聚集索引有兩個的優(yōu)勢:
1、以最快的速度縮小查詢范圍。
2、以最快的速度進行字段排序。
第1條多用在查詢優(yōu)化時,而第2條多用在進行分頁時的數(shù)據(jù)排序。
而聚集索引在每個表內(nèi)又只能建立一個,這使得聚集索引顯得更加的重要。聚集索引的挑選可以說是實現(xiàn)“查詢優(yōu)化”和“高效分頁”的最關鍵因素。
但要既使聚集索引列既符合查詢列的需要,又符合排序列的需要,這通常是一個矛盾。筆者前面“索引”的討論中,將fariqi,即用戶發(fā)文日期作為了聚集索引的起始列,日期的精確度為“日”。這種作法的優(yōu)點,前面已經(jīng)提到了,在進行劃時間段的快速查詢中,比用ID主鍵列有很大的優(yōu)勢。
但在分頁時,由于這個聚集索引列存在著重復記錄,所以無法使用max或min來最為分頁的參照物,進而無法實現(xiàn)更為高效的排序。而如果將ID主鍵列作為聚集索引,那么聚集索引除了用以排序之外,沒有任何用處,實際上是浪費了聚集索引這個寶貴的資源。
為解決這個矛盾,筆者后來又添加了一個日期列,其默認值為getdate()。用戶在寫入記錄時,這個列自動寫入當時的時間,時間精確到毫秒。即使這樣,為了避免可能性很小的重合,還要在此列上創(chuàng)建UNIQUE約束。將此日期列作為聚集索引列。
有了這個時間型聚集索引列之后,用戶就既可以用這個列查找用戶在插入數(shù)據(jù)時的某個時間段的查詢,又可以作為列來實現(xiàn)max或min,成為分頁算法的參照物。
經(jīng)過這樣的優(yōu)化,筆者發(fā)現(xiàn),無論是大數(shù)據(jù)量的情況下還是小數(shù)據(jù)量的情況下,分頁速度一般都是幾十毫秒,甚至0毫秒。而用日期段縮小范圍的查詢速度比原來也沒有任何遲鈍。聚集索引是如此的重要和珍貴,所以筆者總結(jié)了一下,一定要將聚集索引建立在:
1、您最頻繁使用的、用以縮小查詢范圍的字段上;
2、您最頻繁使用的、需要排序的字段上。
結(jié)束語
本篇文章匯集了筆者近段在使用數(shù)據(jù)庫方面的心得,是在做“辦公自動化”系統(tǒng)時實踐經(jīng)驗的積累。希望這篇文章不僅能夠給大家的工作帶來一定的幫助,也希望能讓大家能夠體會到分析問題的方法;最重要的是,希望這篇文章能夠拋磚引玉,掀起大家的學習和討論的興趣,以共同促進,共同為公安科技強警事業(yè)和金盾工程做出自己的努力。
最后需要說明的是,在試驗中,我發(fā)現(xiàn)用戶在進行大數(shù)據(jù)量查詢的時候,對數(shù)據(jù)庫速度影響的不是內(nèi)存大小,而是CPU。在我的P4 2.4機器上試驗的時候,查看“資源管理器”,CPU經(jīng)常出現(xiàn)持續(xù)到100%的現(xiàn)象,而內(nèi)存用量卻并沒有改變或者說沒有大的改變。即使在我們的HP ML 350 G3服務器上試驗時,CPU峰值也能達到90%,一般持續(xù)在70%左右。
本文的試驗數(shù)據(jù)都是來自我們的HP ML 350服務器。服務器配置:雙Inter Xeon 超線程 CPU 2.4G,內(nèi)存1G,操作系統(tǒng)Windows Server 2003 Enterprise Edition,數(shù)據(jù)庫SQL Server 2000 SP3
從上表中,我們可以看出,三種存儲過程在執(zhí)行100頁以下的分頁命令時,都是可以信任的,速度都很好。但第一種方案在執(zhí)行分頁1000頁以上后,速度就降了下來。第二種方案大約是在執(zhí)行分頁1萬頁以上后速度開始降了下來。而第三種方案卻始終沒有大的降勢,后勁仍然很足。
在確定了第三種分頁方案后,我們可以據(jù)此寫一個存儲過程。大家知道SQL SERVER的存儲過程是事先編譯好的SQL語句,它的執(zhí)行效率要比通過WEB頁面?zhèn)鱽淼腟QL語句的執(zhí)行效率要高。下面的存儲過程不僅含有分頁方案,還會根據(jù)頁面?zhèn)鱽淼膮?shù)來確定是否進行數(shù)據(jù)總數(shù)統(tǒng)計。
--獲取指定頁的數(shù)據(jù):
CREATE PROCEDURE pagination3
@tblName varchar(255), -- 表名
@strGetFields varchar(1000) = ''*'', -- 需要返回的列
@fldName varchar(255)='''', -- 排序的字段名
@PageSize int = 10, -- 頁尺寸
@PageIndex int = 1, -- 頁碼
@doCount bit = 0, -- 返回記錄總數(shù), 非 0 值則返回
@OrderType bit = 0, -- 設置排序類型, 非 0 值則降序
@strWhere varchar(1500) = '''' -- 查詢條件 (注意: 不要加 where)
AS
declare @strSQL varchar(5000) -- 主語句
declare @strTmp varchar(110) -- 臨時變量
declare @strOrder varchar(400) -- 排序類型
if @doCount != 0
begin
if @strWhere !=''''
set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere
else
set @strSQL = "select count(*) as Total from [" + @tblName + "]"
end
--以上代碼的意思是如果@doCount傳遞過來的不是0,就執(zhí)行總數(shù)統(tǒng)計。以下的所有代碼都是@doCount為0的情況:
else
begin
if @OrderType != 0
begin
set @strTmp = "<(select min"
set @strOrder = " order by [" + @fldName +"] desc"
--如果@OrderType不是0,就執(zhí)行降序,這句很重要!
end
else
begin
set @strTmp = ">(select max"
set @strOrder = " order by [" + @fldName +"] asc"
end
if @PageIndex = 1
begin
if @strWhere != ''''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "
from [" + @tblName + "] where " + @strWhere + " " + @strOrder
else
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "
from ["+ @tblName + "] "+ @strOrder
--如果是第一頁就執(zhí)行以上代碼,這樣會加快執(zhí)行速度
end
else
begin
--以下代碼賦予了@strSQL以真正執(zhí)行的SQL代碼
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "])
from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "]
from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder
if @strWhere != ''''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["
+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["
+ @fldName + "] from [" + @tblName + "] where " + @strWhere + " "
+ @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder
end
end
exec (@strSQL)
GO
上面的這個存儲過程是一個通用的存儲過程,其注釋已寫在其中了。 在大數(shù)據(jù)量的情況下,特別是在查詢最后幾頁的時候,查詢時間一般不會超過9秒;而用其他存儲過程,在實踐中就會導致超時,所以這個存儲過程非常適用于大容量數(shù)據(jù)庫的查詢。 筆者希望能夠通過對以上存儲過程的解析,能給大家?guī)硪欢ǖ膯⑹?,并給工作帶來一定的效率提升,同時希望同行提出更優(yōu)秀的實時數(shù)據(jù)分頁算法
在上一節(jié)的標題中,筆者寫的是:實現(xiàn)小數(shù)據(jù)量和海量數(shù)據(jù)的通用分頁顯示存儲過程。這是因為在將本存儲過程應用于“辦公自動化”系統(tǒng)的實踐中時,筆者發(fā)現(xiàn)這第三種存儲過程在小數(shù)據(jù)量的情況下,有如下現(xiàn)象:
1、分頁速度一般維持在1秒和3秒之間。
2、在查詢最后一頁時,速度一般為5秒至8秒,哪怕分頁總數(shù)只有3頁或30萬頁。
雖然在超大容量情況下,這個分頁的實現(xiàn)過程是很快的,但在分前幾頁時,這個1-3秒的速度比起第一種甚至沒有經(jīng)過優(yōu)化的分頁方法速度還要慢,借用戶的話說就是“還沒有ACCESS數(shù)據(jù)庫速度快”,這個認識足以導致用戶放棄使用您開發(fā)的系統(tǒng)。
筆者就此分析了一下,原來產(chǎn)生這種現(xiàn)象的癥結(jié)是如此的簡單,但又如此的重要:排序的字段不是聚集索引!
本篇文章的題目是:“查詢優(yōu)化及分頁算法方案”。筆者只所以把“查詢優(yōu)化”和“分頁算法”這兩個聯(lián)系不是很大的論題放在一起,就是因為二者都需要一個非常重要的東西――聚集索引。
在前面的討論中我們已經(jīng)提到了,聚集索引有兩個的優(yōu)勢:
1、以最快的速度縮小查詢范圍。
2、以最快的速度進行字段排序。
第1條多用在查詢優(yōu)化時,而第2條多用在進行分頁時的數(shù)據(jù)排序。
而聚集索引在每個表內(nèi)又只能建立一個,這使得聚集索引顯得更加的重要。聚集索引的挑選可以說是實現(xiàn)“查詢優(yōu)化”和“高效分頁”的最關鍵因素。
但要既使聚集索引列既符合查詢列的需要,又符合排序列的需要,這通常是一個矛盾。筆者前面“索引”的討論中,將fariqi,即用戶發(fā)文日期作為了聚集索引的起始列,日期的精確度為“日”。這種作法的優(yōu)點,前面已經(jīng)提到了,在進行劃時間段的快速查詢中,比用ID主鍵列有很大的優(yōu)勢。
但在分頁時,由于這個聚集索引列存在著重復記錄,所以無法使用max或min來最為分頁的參照物,進而無法實現(xiàn)更為高效的排序。而如果將ID主鍵列作為聚集索引,那么聚集索引除了用以排序之外,沒有任何用處,實際上是浪費了聚集索引這個寶貴的資源。
為解決這個矛盾,筆者后來又添加了一個日期列,其默認值為getdate()。用戶在寫入記錄時,這個列自動寫入當時的時間,時間精確到毫秒。即使這樣,為了避免可能性很小的重合,還要在此列上創(chuàng)建UNIQUE約束。將此日期列作為聚集索引列。
有了這個時間型聚集索引列之后,用戶就既可以用這個列查找用戶在插入數(shù)據(jù)時的某個時間段的查詢,又可以作為列來實現(xiàn)max或min,成為分頁算法的參照物。
經(jīng)過這樣的優(yōu)化,筆者發(fā)現(xiàn),無論是大數(shù)據(jù)量的情況下還是小數(shù)據(jù)量的情況下,分頁速度一般都是幾十毫秒,甚至0毫秒。而用日期段縮小范圍的查詢速度比原來也沒有任何遲鈍。聚集索引是如此的重要和珍貴,所以筆者總結(jié)了一下,一定要將聚集索引建立在:
1、您最頻繁使用的、用以縮小查詢范圍的字段上;
2、您最頻繁使用的、需要排序的字段上。
結(jié)束語
本篇文章匯集了筆者近段在使用數(shù)據(jù)庫方面的心得,是在做“辦公自動化”系統(tǒng)時實踐經(jīng)驗的積累。希望這篇文章不僅能夠給大家的工作帶來一定的幫助,也希望能讓大家能夠體會到分析問題的方法;最重要的是,希望這篇文章能夠拋磚引玉,掀起大家的學習和討論的興趣,以共同促進,共同為公安科技強警事業(yè)和金盾工程做出自己的努力。
最后需要說明的是,在試驗中,我發(fā)現(xiàn)用戶在進行大數(shù)據(jù)量查詢的時候,對數(shù)據(jù)庫速度影響的不是內(nèi)存大小,而是CPU。在我的P4 2.4機器上試驗的時候,查看“資源管理器”,CPU經(jīng)常出現(xiàn)持續(xù)到100%的現(xiàn)象,而內(nèi)存用量卻并沒有改變或者說沒有大的改變。即使在我們的HP ML 350 G3服務器上試驗時,CPU峰值也能達到90%,一般持續(xù)在70%左右。
本文的試驗數(shù)據(jù)都是來自我們的HP ML 350服務器。服務器配置:雙Inter Xeon 超線程 CPU 2.4G,內(nèi)存1G,操作系統(tǒng)Windows Server 2003 Enterprise Edition,數(shù)據(jù)庫SQL Server 2000 SP3
從上表中,我們可以看出,三種存儲過程在執(zhí)行100頁以下的分頁命令時,都是可以信任的,速度都很好。但第一種方案在執(zhí)行分頁1000頁以上后,速度就降了下來。第二種方案大約是在執(zhí)行分頁1萬頁以上后速度開始降了下來。而第三種方案卻始終沒有大的降勢,后勁仍然很足。
在確定了第三種分頁方案后,我們可以據(jù)此寫一個存儲過程。大家知道SQL SERVER的存儲過程是事先編譯好的SQL語句,它的執(zhí)行效率要比通過WEB頁面?zhèn)鱽淼腟QL語句的執(zhí)行效率要高。下面的存儲過程不僅含有分頁方案,還會根據(jù)頁面?zhèn)鱽淼膮?shù)來確定是否進行數(shù)據(jù)總數(shù)統(tǒng)計。
--獲取指定頁的數(shù)據(jù):
CREATE PROCEDURE pagination3
@tblName varchar(255), -- 表名
@strGetFields varchar(1000) = ''*'', -- 需要返回的列
@fldName varchar(255)='''', -- 排序的字段名
@PageSize int = 10, -- 頁尺寸
@PageIndex int = 1, -- 頁碼
@doCount bit = 0, -- 返回記錄總數(shù), 非 0 值則返回
@OrderType bit = 0, -- 設置排序類型, 非 0 值則降序
@strWhere varchar(1500) = '''' -- 查詢條件 (注意: 不要加 where)
AS
declare @strSQL varchar(5000) -- 主語句
declare @strTmp varchar(110) -- 臨時變量
declare @strOrder varchar(400) -- 排序類型
if @doCount != 0
begin
if @strWhere !=''''
set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere
else
set @strSQL = "select count(*) as Total from [" + @tblName + "]"
end
--以上代碼的意思是如果@doCount傳遞過來的不是0,就執(zhí)行總數(shù)統(tǒng)計。以下的所有代碼都是@doCount為0的情況:
else
begin
if @OrderType != 0
begin
set @strTmp = "<(select min"
set @strOrder = " order by [" + @fldName +"] desc"
--如果@OrderType不是0,就執(zhí)行降序,這句很重要!
end
else
begin
set @strTmp = ">(select max"
set @strOrder = " order by [" + @fldName +"] asc"
end
if @PageIndex = 1
begin
if @strWhere != ''''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "
from [" + @tblName + "] where " + @strWhere + " " + @strOrder
else
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "
from ["+ @tblName + "] "+ @strOrder
--如果是第一頁就執(zhí)行以上代碼,這樣會加快執(zhí)行速度
end
else
begin
--以下代碼賦予了@strSQL以真正執(zhí)行的SQL代碼
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "])
from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "]
from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder
if @strWhere != ''''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["
+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["
+ @fldName + "] from [" + @tblName + "] where " + @strWhere + " "
+ @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder
end
end
exec (@strSQL)
GO
上面的這個存儲過程是一個通用的存儲過程,其注釋已寫在其中了。 在大數(shù)據(jù)量的情況下,特別是在查詢最后幾頁的時候,查詢時間一般不會超過9秒;而用其他存儲過程,在實踐中就會導致超時,所以這個存儲過程非常適用于大容量數(shù)據(jù)庫的查詢。 筆者希望能夠通過對以上存儲過程的解析,能給大家?guī)硪欢ǖ膯⑹?,并給工作帶來一定的效率提升,同時希望同行提出更優(yōu)秀的實時數(shù)據(jù)分頁算法