1、概述
為了減少接縫水泥混凝土路面由于橫向脹、縮縫的薄弱而引起的各種病害(如唧泥、錯(cuò)臺(tái)等),改善路用性能,延長(zhǎng)道路的使用壽命,在高等級(jí)公路的特殊地段采用連續(xù)配筋混凝土路面(簡(jiǎn)稱CRCP)是一種合理的路面結(jié)構(gòu)形式。CRCP由于在路面縱向配有足夠數(shù)量的鋼筋,以控制混凝土路面板縱向收縮產(chǎn)生的裂縫寬度和數(shù)量,在施工時(shí)完全不設(shè)脹、縮縫(施工縫及構(gòu)造所需的脹縫除外),為道路使用者提供了一條完整而平坦的行車表面,既改善了汽車行駛的平穩(wěn)性,同時(shí)又增加了路面板的整體強(qiáng)度。
CRCP的板厚由車輛荷載來(lái)控制。美國(guó)ACI設(shè)計(jì)法是根據(jù)AASHO試驗(yàn)路的觀測(cè)資料提出的JCP的設(shè)計(jì)方法引入了荷載傳遞因素J,建立了新的諾謨圖;認(rèn)為CRCP板厚較JCP可減薄10%~20%。
Teaxs Austin大學(xué)的MA,J.C.M,B.F.McCullough等、日本Kanazawa大學(xué)的TATSUO NISHIZAWA、Tohoku大學(xué)的TADASHI FUKUDA等人,將路面板作為彈性三層地基上的薄板,并采用裂縫模型來(lái)模擬CRCP的橫向裂縫的傳荷特性;裂縫模型是由一系列線性彈簧組成的,具有抗剪剛度KW、抗彎剛度Kθn、抗扭剛度Kθt.為了能充分考慮縱,橫向連續(xù)鋼筋對(duì)板承載力的有利作用,在設(shè)計(jì)CRCP時(shí)能合理地確定板的厚度,必須建立合適的理論模型,并對(duì)CRCP的荷載應(yīng)力作詳細(xì)分析。
2、理論模型
對(duì)于連續(xù)配筋混凝土路面,由于在板的厚度方向需要考慮縱、橫向鋼筋的作用,必須采用三維有限元分析方法。
2.1混凝土八結(jié)點(diǎn)六面體單元路面結(jié)構(gòu)是形狀規(guī)則的矩形板體,分析單元采用邊界為正交的六面體單元,是一種空間等參數(shù)單元,在單元?jiǎng)澐诌^(guò)程中采用大小分級(jí)的方法以滿足不同的需要。
2.2鋼筋模型對(duì)于鋼筋直徑較小且分布均勻的混凝土路面板來(lái)說(shuō),混凝土與鋼筋是在彈性階段工作,鋼筋與混凝土之間不產(chǎn)生滑動(dòng),可以認(rèn)為鋼筋與混凝土之間的粘結(jié)狀況是完全粘結(jié)。國(guó)外的研究資料也表明,鋼筋與混凝土采用完全粘結(jié)的假定或計(jì)入鋼筋與混凝土間粘結(jié)一滑移的影響對(duì)結(jié)果的影響很小。
在CRCP的荷載應(yīng)力進(jìn)行有限元分析時(shí),鋼筋假定為線性桿單元,它與混凝土單元在相鄰棱邊界的兩端結(jié)點(diǎn)鉸接。六面體單元位移函數(shù)在棱邊界上是線性的,可以保證鉸接桿單元與混凝土單元之間的位移連續(xù)性。
2.3橫向裂縫模型CRCP的橫向細(xì)小裂縫主要是由于混凝土在硬化固結(jié)時(shí)的干縮及溫縮受阻而形成的。這種裂縫的寬度很小,一般在0.5mm左右。由于縱向連續(xù)鋼筋的作用,橫向裂縫發(fā)展較為規(guī)則(垂直于中線方向)。在橫向裂縫處,混凝土路面板完全斷開(kāi),縱向鋼筋保證其張開(kāi)量不至過(guò)大。
2.4地基模型地基模型為溫克勒地基模型和彈性半空間地基模型。
3、有限元分析方法
連續(xù)配筋水泥混凝土路面板是由板單元、鋼筋單元、裂縫單元及地基四部分組成的。有限元分析時(shí)用結(jié)點(diǎn)位移{δ}表示各單元的內(nèi)力,再根據(jù)相同結(jié)點(diǎn)疊加的原則形成總剛度矩陣[K];同時(shí)按靜力等效的原則,將每個(gè)單元所受的荷載移置到相應(yīng)結(jié)點(diǎn)上形成荷載列陣{F}。通過(guò)平衡方程{F}=[K]{δ}求解結(jié)點(diǎn)位移{δ},并得到應(yīng)變矩陣{ε}和應(yīng)力{σ}。
3.1鋼筋單元的剛度矩陣
平面內(nèi)任意一根桿件的桿端力分量是節(jié)點(diǎn)對(duì)桿端的作用力沿x、y坐標(biāo)軸向的分量,其符號(hào)規(guī)定與x、y方向一致為正,相反為負(fù),桿端力分量的列陣為,{F}=[UiViUjVJ]T;桿端位移分量的列陣為,{δ}=[UiViUjVJ]T.
或{F}=[K]{δ}
3.2裂縫單元的位移模式及剛度矩陣劃分單元時(shí),混凝土在橫向裂縫處不連續(xù),裂縫兩側(cè)的結(jié)點(diǎn)應(yīng)分開(kāi)編號(hào),但裂縫單元兩側(cè)結(jié)點(diǎn)的坐標(biāo)相同。如圖3所示,橫向裂縫兩側(cè)對(duì)應(yīng)結(jié)點(diǎn)以聯(lián)結(jié)單元相聯(lián),這種聯(lián)結(jié)單元在X、Y、Z三個(gè)方向具有聯(lián)結(jié)剛度Kx、Ky、Kz.對(duì)于裂縫截面上縱向鋼筋相聯(lián)結(jié)處,聯(lián)結(jié)單元的Kx為鋼筋的抗拉(壓)剛度,Ky、Kz為裂縫處鋼筋與混凝土共同作用的抗剪剛度;
而對(duì)于相應(yīng)混凝土結(jié)點(diǎn)間的聯(lián)結(jié)單元,Kx為混凝土的抗壓剛度,Ky、Kz為裂縫兩側(cè)骨料的嵌鎖剛度。
(1)聯(lián)結(jié)單元的應(yīng)變矩陣聯(lián)結(jié)單元的應(yīng)變是指其兩端結(jié)點(diǎn)在X、Y、Z三向位移差,量綱為長(zhǎng)度。
(2)應(yīng)力矩陣由應(yīng)力應(yīng)變關(guān)系可得:[σ]e=[D]{ε}eKx——鋼筋抗拉(壓)剛度, ,kg/cm;
Ky=Kz——鋼筋的抗剪剛度,,kg/cm;
β——埋入混凝土中的鋼筋的相對(duì)剛度,1/cm;b——裂縫寬度,cm;
Es、As——鋼筋彈性模量及面積。
(3)單元?jiǎng)偠染仃囉商摴Ψ匠炭傻茫海跭]e=[B]T[D][B]
為了減少接縫水泥混凝土路面由于橫向脹、縮縫的薄弱而引起的各種病害(如唧泥、錯(cuò)臺(tái)等),改善路用性能,延長(zhǎng)道路的使用壽命,在高等級(jí)公路的特殊地段采用連續(xù)配筋混凝土路面(簡(jiǎn)稱CRCP)是一種合理的路面結(jié)構(gòu)形式。CRCP由于在路面縱向配有足夠數(shù)量的鋼筋,以控制混凝土路面板縱向收縮產(chǎn)生的裂縫寬度和數(shù)量,在施工時(shí)完全不設(shè)脹、縮縫(施工縫及構(gòu)造所需的脹縫除外),為道路使用者提供了一條完整而平坦的行車表面,既改善了汽車行駛的平穩(wěn)性,同時(shí)又增加了路面板的整體強(qiáng)度。
CRCP的板厚由車輛荷載來(lái)控制。美國(guó)ACI設(shè)計(jì)法是根據(jù)AASHO試驗(yàn)路的觀測(cè)資料提出的JCP的設(shè)計(jì)方法引入了荷載傳遞因素J,建立了新的諾謨圖;認(rèn)為CRCP板厚較JCP可減薄10%~20%。
Teaxs Austin大學(xué)的MA,J.C.M,B.F.McCullough等、日本Kanazawa大學(xué)的TATSUO NISHIZAWA、Tohoku大學(xué)的TADASHI FUKUDA等人,將路面板作為彈性三層地基上的薄板,并采用裂縫模型來(lái)模擬CRCP的橫向裂縫的傳荷特性;裂縫模型是由一系列線性彈簧組成的,具有抗剪剛度KW、抗彎剛度Kθn、抗扭剛度Kθt.為了能充分考慮縱,橫向連續(xù)鋼筋對(duì)板承載力的有利作用,在設(shè)計(jì)CRCP時(shí)能合理地確定板的厚度,必須建立合適的理論模型,并對(duì)CRCP的荷載應(yīng)力作詳細(xì)分析。
2、理論模型
對(duì)于連續(xù)配筋混凝土路面,由于在板的厚度方向需要考慮縱、橫向鋼筋的作用,必須采用三維有限元分析方法。
2.1混凝土八結(jié)點(diǎn)六面體單元路面結(jié)構(gòu)是形狀規(guī)則的矩形板體,分析單元采用邊界為正交的六面體單元,是一種空間等參數(shù)單元,在單元?jiǎng)澐诌^(guò)程中采用大小分級(jí)的方法以滿足不同的需要。
2.2鋼筋模型對(duì)于鋼筋直徑較小且分布均勻的混凝土路面板來(lái)說(shuō),混凝土與鋼筋是在彈性階段工作,鋼筋與混凝土之間不產(chǎn)生滑動(dòng),可以認(rèn)為鋼筋與混凝土之間的粘結(jié)狀況是完全粘結(jié)。國(guó)外的研究資料也表明,鋼筋與混凝土采用完全粘結(jié)的假定或計(jì)入鋼筋與混凝土間粘結(jié)一滑移的影響對(duì)結(jié)果的影響很小。
在CRCP的荷載應(yīng)力進(jìn)行有限元分析時(shí),鋼筋假定為線性桿單元,它與混凝土單元在相鄰棱邊界的兩端結(jié)點(diǎn)鉸接。六面體單元位移函數(shù)在棱邊界上是線性的,可以保證鉸接桿單元與混凝土單元之間的位移連續(xù)性。
2.3橫向裂縫模型CRCP的橫向細(xì)小裂縫主要是由于混凝土在硬化固結(jié)時(shí)的干縮及溫縮受阻而形成的。這種裂縫的寬度很小,一般在0.5mm左右。由于縱向連續(xù)鋼筋的作用,橫向裂縫發(fā)展較為規(guī)則(垂直于中線方向)。在橫向裂縫處,混凝土路面板完全斷開(kāi),縱向鋼筋保證其張開(kāi)量不至過(guò)大。
2.4地基模型地基模型為溫克勒地基模型和彈性半空間地基模型。
3、有限元分析方法
連續(xù)配筋水泥混凝土路面板是由板單元、鋼筋單元、裂縫單元及地基四部分組成的。有限元分析時(shí)用結(jié)點(diǎn)位移{δ}表示各單元的內(nèi)力,再根據(jù)相同結(jié)點(diǎn)疊加的原則形成總剛度矩陣[K];同時(shí)按靜力等效的原則,將每個(gè)單元所受的荷載移置到相應(yīng)結(jié)點(diǎn)上形成荷載列陣{F}。通過(guò)平衡方程{F}=[K]{δ}求解結(jié)點(diǎn)位移{δ},并得到應(yīng)變矩陣{ε}和應(yīng)力{σ}。
3.1鋼筋單元的剛度矩陣
平面內(nèi)任意一根桿件的桿端力分量是節(jié)點(diǎn)對(duì)桿端的作用力沿x、y坐標(biāo)軸向的分量,其符號(hào)規(guī)定與x、y方向一致為正,相反為負(fù),桿端力分量的列陣為,{F}=[UiViUjVJ]T;桿端位移分量的列陣為,{δ}=[UiViUjVJ]T.
或{F}=[K]{δ}
3.2裂縫單元的位移模式及剛度矩陣劃分單元時(shí),混凝土在橫向裂縫處不連續(xù),裂縫兩側(cè)的結(jié)點(diǎn)應(yīng)分開(kāi)編號(hào),但裂縫單元兩側(cè)結(jié)點(diǎn)的坐標(biāo)相同。如圖3所示,橫向裂縫兩側(cè)對(duì)應(yīng)結(jié)點(diǎn)以聯(lián)結(jié)單元相聯(lián),這種聯(lián)結(jié)單元在X、Y、Z三個(gè)方向具有聯(lián)結(jié)剛度Kx、Ky、Kz.對(duì)于裂縫截面上縱向鋼筋相聯(lián)結(jié)處,聯(lián)結(jié)單元的Kx為鋼筋的抗拉(壓)剛度,Ky、Kz為裂縫處鋼筋與混凝土共同作用的抗剪剛度;
而對(duì)于相應(yīng)混凝土結(jié)點(diǎn)間的聯(lián)結(jié)單元,Kx為混凝土的抗壓剛度,Ky、Kz為裂縫兩側(cè)骨料的嵌鎖剛度。
(1)聯(lián)結(jié)單元的應(yīng)變矩陣聯(lián)結(jié)單元的應(yīng)變是指其兩端結(jié)點(diǎn)在X、Y、Z三向位移差,量綱為長(zhǎng)度。
(2)應(yīng)力矩陣由應(yīng)力應(yīng)變關(guān)系可得:[σ]e=[D]{ε}eKx——鋼筋抗拉(壓)剛度, ,kg/cm;
Ky=Kz——鋼筋的抗剪剛度,,kg/cm;
β——埋入混凝土中的鋼筋的相對(duì)剛度,1/cm;b——裂縫寬度,cm;
Es、As——鋼筋彈性模量及面積。
(3)單元?jiǎng)偠染仃囉商摴Ψ匠炭傻茫海跭]e=[B]T[D][B]