畫線的算法不少,但要作到高速、簡單并不容易。斜率相乘法是最簡單的方法之一,但計算每個點均要花費不少時間用于乘、除法運算;下面介紹的是Bresenham's高效畫線算法,對每個點的坐標計算只要加、減法就能完成。
簡化算法用偽Pascal語言描述如下:
procedure DrawLine(x1, y1, x2, y2: Integer);
var
x, y, DeltaX, DeltaY, HalfX, ErrorTerm, i: Integer;
begin
DeltaX := x2 - x1;
DeltaY := y2 - y1;
HalfX := (x2 - x1) shr 1;
ErrorTerm := 0;
x := x1;
y := y1;
for i:=0 to DeltaX do
begin
Plot(X, Y);
Inc(x);
ErrorTerm := ErrorTerm + DeltaY;
if ErrorTerm>HalfX then
begin
ErrorTerm := ErrorTerm - DeltaX;
Inc(y);
end;
end;
end;
為方便閱讀,上述程序作了簡化。實際程序應略作修正,以分別處理DeltaX與DeltaY比較大小, 必要時交換起始、結束點等。
修正后的的偽Pascal算法如下:
procedure DrawLine(x1, y1, x2, y2: Integer);
var
x, y, DeltaX, DeltaY, HalfCount, ErrorTerm, i, Flag: Integer;
begin
DeltaX := x2 - x1;
DeltaY := y2 - y1;
if Abs(DeltaY) begin
if DeltaX<0 then
begin
i := x1; x1 := x2; x2 := i;
i := y1; y1 := y2; y2 := i;
DeltaX := x2 - x1;
DeltaY := y2 - y1;
end;
if DeltaY<0 then Flag := -1
else Flag := 1;
DeltaY := Abs(DeltaY);
HalfCount := DeltaX shr 1;
ErrorTerm := 0;
x := x1;
y := y1;
簡化算法用偽Pascal語言描述如下:
procedure DrawLine(x1, y1, x2, y2: Integer);
var
x, y, DeltaX, DeltaY, HalfX, ErrorTerm, i: Integer;
begin
DeltaX := x2 - x1;
DeltaY := y2 - y1;
HalfX := (x2 - x1) shr 1;
ErrorTerm := 0;
x := x1;
y := y1;
for i:=0 to DeltaX do
begin
Plot(X, Y);
Inc(x);
ErrorTerm := ErrorTerm + DeltaY;
if ErrorTerm>HalfX then
begin
ErrorTerm := ErrorTerm - DeltaX;
Inc(y);
end;
end;
end;
為方便閱讀,上述程序作了簡化。實際程序應略作修正,以分別處理DeltaX與DeltaY比較大小, 必要時交換起始、結束點等。
修正后的的偽Pascal算法如下:
procedure DrawLine(x1, y1, x2, y2: Integer);
var
x, y, DeltaX, DeltaY, HalfCount, ErrorTerm, i, Flag: Integer;
begin
DeltaX := x2 - x1;
DeltaY := y2 - y1;
if Abs(DeltaY) begin
if DeltaX<0 then
begin
i := x1; x1 := x2; x2 := i;
i := y1; y1 := y2; y2 := i;
DeltaX := x2 - x1;
DeltaY := y2 - y1;
end;
if DeltaY<0 then Flag := -1
else Flag := 1;
DeltaY := Abs(DeltaY);
HalfCount := DeltaX shr 1;
ErrorTerm := 0;
x := x1;
y := y1;