asp.net中c++單例實現(xiàn)問題分析

字號:


    方案一
    代碼如下:
    class qmmanager
    {
    public:
    static qmmanager &instance()
    {
    static qmmanager instance_;
    return instance_;
    }
    }
    這是最簡單的版本,在單線程下(或者是c++0x下)是沒任何問題的,但在多線程下就不行了,因為static qmmanager instance_;這句話不是線程安全的。
    在局部作用域下的靜態(tài)變量在編譯時,編譯器會創(chuàng)建一個附加變量標(biāo)識靜態(tài)變量是否被初始化,會被編譯器變成像下面這樣(偽代碼):
    代碼如下:
    static qmmanager &instance()
    {
    static bool constructed = false;
    static uninitialized qmmanager instance_;
    if (!constructed) {
    constructed = true;
    new(&s) qmmanager; //construct it
    }
    return instance_;
    }
    這里有競爭條件,兩個線程同時調(diào)用instance()時,一個線程運(yùn)行到if語句進(jìn)入后還沒設(shè)constructed值,此時切換到另一線程,constructed值還是false,同樣進(jìn)入到if語句里初始化變量,兩個線程都執(zhí)行了這個單例類的初始化,就不再是單例了。
    方案二
    一個解決方法是加鎖:
    代碼如下:
    static qmmanager &instance()
    {
    lock(); //鎖自己實現(xiàn)
    static qmmanager instance_;
    unlock();
    return instance_;
    }
    但這樣每次調(diào)用instance()都要加鎖解鎖,代價略大。
    方案三
    那再改變一下,把內(nèi)部靜態(tài)實例變成類的靜態(tài)成員,在外部初始化,也就是在include了文件,main函數(shù)執(zhí)行前就初始化這個實例,就不會有線程重入問題了:
    代碼如下:
    class qmmanager
    {
    protected:
    static qmmanager instance_;
    qmmanager();
    ~qmmanager(){};
    public:
    static qmmanager *instance()
    {
    return &instance_;
    }
    void do_something();
    };
    qmmanager qmmanager::instance_; //外部初始化
    這被稱為餓漢模式,程序一加載就初始化,不管有沒有調(diào)用到。
    看似沒問題,但還是有坑,在一個2b情況下會有問題:在這個單例類的構(gòu)造函數(shù)里調(diào)用另一個單例類的方法可能會有問題。
    看例子:
    代碼如下:
    //.h
    class qmmanager
    {
    protected:
    static qmmanager instance_;
    qmmanager();
    ~qmmanager(){};
    public:
    static qmmanager *instance()
    {
    return &instance_;
    }
    };
    class qmsqlite
    {
    protected:
    static qmsqlite instance_;
    qmsqlite();
    ~qmsqlite(){};
    public:
    static qmsqlite *instance()
    {
    return &instance_;
    }
    void do_something();
    };
    qmmanager qmmanager::instance_;
    qmsqlite qmsqlite::instance_;
    //.cpp
    qmmanager::qmmanager()
    {
    printf(qmmanager constructorn);
    qmsqlite::instance()->do_something();
    }
    qmsqlite::qmsqlite()
    {
    printf(qmsqlite constructorn);
    }
    void qmsqlite::do_something()
    {
    printf(qmsqlite do_somethingn);
    }
    這里qmmanager的構(gòu)造函數(shù)調(diào)用了qmsqlite的instance函數(shù),但此時qmsqlite::instance_可能還沒有初始化。
    這里的執(zhí)行流程:程序開始后,在執(zhí)行main前,執(zhí)行到qmmanager qmmanager::instance_;這句代碼,初始化qmmanager里的instance_靜態(tài)變量,調(diào)用到qmmanager的構(gòu)造函數(shù),在構(gòu)造函數(shù)里調(diào)用qmsqlite::instance(),取qmsqlite里的instance_靜態(tài)變量,但此時qmsqlite::instance_還沒初始化,問題就出現(xiàn)了。
    那這里會crash嗎,測試結(jié)果是不會,這應(yīng)該跟編譯器有關(guān),靜態(tài)數(shù)據(jù)區(qū)空間應(yīng)該是先被分配了,在調(diào)用qmmanager構(gòu)造函數(shù)前,qmsqlite成員函數(shù)在內(nèi)存里已經(jīng)存在了,只是還未調(diào)到它的構(gòu)造函數(shù),所以輸出是這樣:
    qmmanager constructor
    qmsqlite do_something
    qmsqlite constructor
    方案四
    那這個問題怎么解決呢,單例對象作為靜態(tài)局部變量有線程安全問題,作為類靜態(tài)全局變量在一開始初始化,有以上2b問題,那結(jié)合下上述兩種方式,可以解決這兩個問題。boost的實現(xiàn)方式是:單例對象作為靜態(tài)局部變量,但增加一個輔助類讓單例對象可以在一開始就初始化。如下:
    代碼如下:
    //.h
    class qmmanager
    {
    protected:
    struct object_creator
    {
    object_creator()
    {
    qmmanager::instance();
    }
    inline void do_nothing() const {}
    };
    static object_creator create_object_;
    qmmanager();
    ~qmmanager(){};
    public:
    static qmmanager *instance()
    {
    static qmmanager instance;
    return &instance;
    }
    };
    qmmanager::object_creator qmmanager::create_object_;
    class qmsqlite
    {
    protected:
    qmsqlite();
    ~qmsqlite(){};
    struct object_creator
    {
    object_creator()
    {
    qmsqlite::instance();
    }
    inline void do_nothing() const {}
    };
    static object_creator create_object_;
    public:
    static qmsqlite *instance()
    {
    static qmsqlite instance;
    return &instance;
    }
    void do_something();
    };
    qmmanager::object_creator qmmanager::create_object_;
    qmsqlite::object_creator qmsqlite::create_object_;
    結(jié)合方案3的.cpp,這下可以看到正確的輸出和調(diào)用了:
    qmmanager constructor
    qmsqlite constructor
    qmsqlite do_something
    來看看這里的執(zhí)行流程:
    初始化qmmanager類全局靜態(tài)變量create_object_
    ->調(diào)用object_creator的構(gòu)造函數(shù)
    ->調(diào)用qmmanager::instance()方法初始化單例
    ->執(zhí)行qmmanager的構(gòu)造函數(shù)
    ->調(diào)用qmsqlite::instance()
    ->初始化局部靜態(tài)變量qmsqlite instance
    ->執(zhí)行qmsqlite的構(gòu)造函數(shù),然后返回這個單例。
    跟方案三的區(qū)別在于qmmanager調(diào)用qmsqlite單例時,方案3是取到全局靜態(tài)變量,此時這個變量未初始化,而方案四的單例是靜態(tài)局部變量,此時調(diào)用會初始化。
    跟最初方案一的區(qū)別是在main函數(shù)前就初始化了單例,不會有線程安全問題。
    最終boost
    上面為了說明清楚點(diǎn)去除了模版,實際使用是用模版,不用寫那么多重復(fù)代碼,這是boost庫的模板實現(xiàn):
    代碼如下:
    template <typename t>
    struct singleton
    {
    struct object_creator
    {
    object_creator(){ singleton<t>::instance(); }
    inline void do_nothing()const {}
    };
    static object_creator create_object;
    public:
    typedef t object_type;
    static object_type& instance()
    {
    static object_type obj;
    //據(jù)說這個do_nothing是確保create_object構(gòu)造函數(shù)被調(diào)用
    //這跟模板的編譯有關(guān)
    create_object.do_nothing();
    return obj;
    }
    };
    template <typename t> typename singleton<t>::object_creator singleton<t>::create_object;
    class qmmanager
    {
    protected:
    qmmanager();
    ~qmmanager(){};
    friend class singleton<qmmanager>;
    public:
    void do_something(){};
    };
    int main()
    {
    singleton<qmmanager>::instance()->do_something();
    return 0;
    }
    其實boost庫這樣的實現(xiàn)像打了幾個補(bǔ)丁,用了一些奇技淫巧,雖然確實繞過了坑實現(xiàn)了需求,但感覺挺不好的。