韋達(dá)定理公式

字號(hào):


    韋達(dá)定理公式:
    一元二次方程ax^2+bx+c (a不為0)中
    設(shè)兩個(gè)根為x和y
    則x+y=-b/a
    xy=c/a
    韋達(dá)定理在更高次方程中也是可以使用的。一般的,對(duì)一個(gè)n次方程∑AiX^i=0
    它的根記作X1,X2…,Xn
    我們有
    ∑Xi=(-1)^1*A(n-1)/A(n)
    ∑XiXj=(-1)^2*A(n-2)/A(n)
    …
    ∏Xi=(-1)^n*A(0)/A(n)
    其中∑是求和,∏是求積。
    如果一元二次方程
    在復(fù)數(shù)集中的根是,那么
    法國(guó)數(shù)學(xué)家韋達(dá)最早發(fā)現(xiàn)代數(shù)方程的根與系數(shù)之間有這種關(guān)系,因此,人們把這個(gè)關(guān)系稱為韋達(dá)定理。歷史是有趣的,韋達(dá)的16世紀(jì)就得出這個(gè)定理,證明這個(gè)定理要依靠代數(shù)基本定理,而代數(shù)基本定理卻是在1799年才由高斯作出第一個(gè)實(shí)質(zhì)性的論性。
    由代數(shù)基本定理可推得:任何一元 n 次方程
    在復(fù)數(shù)集中必有根。因此,該方程的左端可以在復(fù)數(shù)范圍內(nèi)分解成一次因式的乘積:
    其中是該方程的個(gè)根。兩端比較系數(shù)即得韋達(dá)定理。
    韋達(dá)定理在方程論中有著廣泛的應(yīng)用。
    定理的證明
    設(shè)<math>x_1</math>,<math>x_2</math>是一元二次方程<math>ax^2+bx+c=0</math>的兩個(gè)解,且不妨令<math>x_1 \ge x_2</math>。根據(jù)求根公式,有
    <math>x_1=\frac{-b + \sqrt {b^2-4ac}}</math>,<math>x_2=\frac{-b - \sqrt {b^2-4ac}}</math>
    所以
    <math>x_1+x_2=\frac{-b + \sqrt {b^2-4ac} + \left (-b \right) - \sqrt {b^2-4ac}} =-\frac</math>,
    <math>x_1x_2=\frac{ \left (-b + \sqrt {b^2-4ac} \right) \left (-b - \sqrt {b^2-4ac} \right)}{\left (2a \right)^2} =\frac</math>