初中數(shù)學學習方法:對比

字號:


    初中數(shù)學學習方法:對比
    (一)標出序列號:找規(guī)律的題目,通常按照一定的順序給出一系列量,要求我們根據(jù)這些已知的量找出一般規(guī)律。找出的規(guī)律,通常包序列號。所以,把變量和序列號放在一起加以比較,就比較容易發(fā)現(xiàn)其中的奧秘。
    例如,觀察下列各式數(shù):0,3,8,15,24,……。試按此規(guī)律寫出的第100個數(shù)是 。
    解答這一題,可以先找一般規(guī)律,然后使用這個規(guī)律,計算出第100個數(shù)。我們把有關的量放在一起加以比較:
    給出的數(shù):0,3,8,15,24,……。
    序列號: 1,2,3, 4, 5,……。
    容易發(fā)現(xiàn),已知數(shù)的每一項,都等于它的序列號的平方減1。因此,第n項是n2-1,第100項是1002-1。
    (二)公因式法:每位數(shù)分成最小公因式相乘,然后再找規(guī)律,看是不是與n2、n3,或2n、3n,或2n、3n有關。
    例如:1,9,25,49,(),(),的第n為(2n-1)2
    (三)看例題:
    A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案與3有關且............即:n3+1
    B:2、4、8、16.......增幅是2、4、8.. .....答案與2的乘方有關 即:2n
    (四)有的可對每位數(shù)同時減去第一位數(shù),成為第二位開始的新數(shù)列,然后用(一)、(二)、(三)技巧找出每位數(shù)與位置的關系。再在找出的規(guī)律上加上第一位數(shù),恢復到原來。
    例:2、5、10、17、26……,同時減去2后得到新數(shù)列:
    0、3、8、15、24……,
    序列號:1、2、3、4、5
    分析觀察可得,新數(shù)列的第n項為:n2-1,所以題中數(shù)列的第n項為:(n2-1)+2=n2+1
    (五)有的可對每位數(shù)同時加上,或乘以,或除以第一位數(shù),成為新數(shù)列,然后,在再找出規(guī)律,并恢復到原來。
    例 : 4,16,36,64,?,144,196,… ?(第一百個數(shù))
    同除以4后可得新數(shù)列:1、4、9、16…,很顯然是位置數(shù)的平方。
    (六)同技巧(四)、(五)一樣,有的可對每位數(shù)同加、或減、或乘、或除同一數(shù)(一般為1、2、3)。當然,同時加、或減的可能性大一些,同時乘、或除的不太常見。
    (七)觀察一下,能否把一個數(shù)列的奇數(shù)位置與偶數(shù)位置分開成為兩個數(shù)列,再分別找規(guī)律。