托??荚囍虚喿x一塊最是考察大家的英語綜合能力。想要提高英語閱讀能力,除了詞匯量的積累,也需要在積累閱讀背景知識,同時多做題目提高閱讀速度。下面是出國留學(xué)網(wǎng)(www.liuxue86.com)托福頻道小編為大家整理的關(guān)于納米技術(shù)的閱讀材料,希望對大家有所幫助!
納米材料及其應(yīng)用
納米技術(shù)在生物工程上的應(yīng)用
眾所周知,分子是保持物質(zhì)化學(xué)性質(zhì)不變的最小單位。生物分子是很好的信息處理材料,每一個生物大分子本身就是一個微型處理器,分子在運動過程中以可預(yù)測方式進行狀態(tài)變化,其原理類似于計算機的邏輯開關(guān),利用該特性并結(jié)合納米技術(shù),可以此來設(shè)計量子計算機。美國南加州大學(xué)的Adelman博士等應(yīng)用基于DNA分子計算技術(shù)的生物實驗方法,有效地解決了目前計算機無法解決的問題—“哈密頓路徑問題”,使人們對生物材料的信息處理功能和生物分子的計算技術(shù)有了進一步的認(rèn)識。
雖然分子計算機目前只是處于理想階段,但科學(xué)家已經(jīng)考慮應(yīng)用幾種生物分子制造計算機的組件,其中細菌視紫紅質(zhì)最具前景。該生物材料具有特異的熱、光、化學(xué)物理特性和很好的穩(wěn)定性,并且,其奇特的光學(xué)循環(huán)特性可用于儲存信息,從而起到代替當(dāng)今計算機信息處理和信息存儲的作用。在整個光循環(huán)過程中,細菌視紫紅質(zhì)經(jīng)歷幾種不同的中間體過程,伴隨相應(yīng)的物質(zhì)結(jié)構(gòu)變化。Birge等研究了細菌視紫紅質(zhì)分子潛在的并行處理機制和用作三維存儲器的潛能。通過調(diào)諧激光束,將信息并行地寫入細菌視紫紅質(zhì)立方體,并從立方體中讀取信息,并且細菌視紫紅質(zhì)的三維存儲器可提供比二維光學(xué)存儲器大得多的存儲空間。
到目前為止,還沒有出現(xiàn)商品化的分子計算機組件。科學(xué)家們認(rèn)為:要想提高集成度,制造微型計算機,關(guān)鍵在于尋找具有開關(guān)功能的微型器件。美國錫拉丘茲大學(xué)已經(jīng)利用細菌視紫紅質(zhì)蛋白質(zhì)制作出了光導(dǎo)“與”門,利用發(fā)光門制成蛋白質(zhì)存儲器。此外,他們還利用細菌視紫紅質(zhì)蛋白質(zhì)研制模擬人腦聯(lián)想能力的中心網(wǎng)絡(luò)和聯(lián)想式存儲裝置。
納米計算機的問世,將會使當(dāng)今的信息時代發(fā)生質(zhì)的飛躍。它將突破傳統(tǒng)極限,使單位體積物質(zhì)的儲存和信息處理的能力提高上百萬倍,從而實現(xiàn)電子學(xué)上的又一次革命。
有關(guān)納米技術(shù)
華人科學(xué)家:美國納米技術(shù)應(yīng)用研究四大熱點
正在美國從事納米技術(shù)研究的華人青年科學(xué)家崔屹博士17日接受新華社記者采訪時表示,美國納米技術(shù)的應(yīng)用研究目前正在半導(dǎo)體芯片、癌癥診斷、光學(xué)新材料和生物分子追蹤等四大熱點領(lǐng)域快速發(fā)展,其中在芯片和癌癥診斷領(lǐng)域的應(yīng)用可望在10年內(nèi)出現(xiàn)劃時代的突破。
崔屹說,在癌癥研究領(lǐng)域,利用納米技術(shù)制成的傳感器可望使各種癌癥的早期診斷成為現(xiàn)實。目前,崔屹和他的同事已經(jīng)在實驗室環(huán)境下實現(xiàn)了對前列腺癌、直腸癌等多種癌癥的早期診斷。納米傳感器靈敏度很高,在進行血液檢測時,當(dāng)傳感器中預(yù)置的某種癌細胞抗體遇到相應(yīng)的抗原時,傳感器中的電流會發(fā)生變化,通過這種電流變化可以判斷血液中癌細胞的種類和濃度。這一研究成果可望于近期發(fā)表在美國《科學(xué)》雜志上。崔屹指出,目前越來越多的風(fēng)險投資正在涌入這一領(lǐng)域,但這一技術(shù)在實用中還有一些技術(shù)難題需要解決。他估計,今后可能會有多種納米傳感器集成在一起被置入人體,以用來早期檢測各種疾病。
在半導(dǎo)體芯片領(lǐng)域,如何讓芯片體積更小、速度更快是科學(xué)界一直研究的課題。目前用于芯片制造的光刻技術(shù)已經(jīng)接近于發(fā)展極限,要想把更多的晶體管集成到一塊芯片上已經(jīng)越來越難。目前,美國納米技術(shù)專家們試圖把納米級的半導(dǎo)體材料做成晶體管,從而可以讓一塊芯片上容納更多的晶體管。這種芯片的運算速度可望比傳統(tǒng)的硅芯片提高上千倍。這一研究方向在2001年取得基礎(chǔ)性研究突破后,目前在應(yīng)用研究中越來越熱。據(jù)崔屹估計,這一技術(shù)可望在10年后達到實用化。
此外,納米技術(shù)在光學(xué)材料和生物分子追蹤兩個領(lǐng)域的應(yīng)用也是研究熱門。在光學(xué)材料研究領(lǐng)域,科學(xué)家們試圖改變某些半導(dǎo)體材料的分子結(jié)構(gòu),用來生產(chǎn)特定的光學(xué)器件。比如,一些科學(xué)家試圖讓某種半導(dǎo)體材料內(nèi)部具有納米級的線狀結(jié)構(gòu),這種材料用于顯示器制造領(lǐng)域可以大大提高顯示器的清晰度和顏色逼真度。而在生物分子追蹤領(lǐng)域,科學(xué)家把某種納米顆粒“粘”在生物分子上,然后利用納米顆粒的發(fā)光特性研究生物分子的行蹤。這對研究艾滋病病毒等在人體內(nèi)的活動過程十分有益。
崔屹說,美國在納米應(yīng)用研究領(lǐng)域中享有資金和人才優(yōu)勢,一直走在世界前列,但距離納米技術(shù)實用化仍有一段路要走。與美國相比,其他國家則主要處于納米技術(shù)的基礎(chǔ)研究階段。
現(xiàn)年27歲的崔屹畢業(yè)于中國科技大學(xué),后在哈佛大學(xué)獲納米應(yīng)用專業(yè)博士,目前在加州大學(xué)伯克利分校從事研究工作。過去幾年,崔屹在《自然》和《科學(xué)》等權(quán)威雜志上發(fā)表多篇研究論文,同時還是2003年美國“米勒”杰出青年科學(xué)家獎和2001年美國材料研究學(xué)會金獎得主。
>>>點擊進入托福頻道了解更多相關(guān)信息