圓錐的體積課件精選

字號:


    小編為了確保您的滿意,盡心盡力地推出了“圓錐的體積課件”文章,歡迎您細(xì)心品讀并加以收藏。作為一名教師,編寫教案和課件都是必不可少的任務(wù),每位教師都應(yīng)當(dāng)認(rèn)真對待。畢竟,學(xué)生們在課堂上的反應(yīng)也會體現(xiàn)在老師的教案和課件中呢。
    圓錐的體積課件(篇1)
    一、教學(xué)內(nèi)容:
    六年制小學(xué)數(shù)學(xué)教材第十二冊第25-26頁
    二、教學(xué)目標(biāo):
    1、知識技能目標(biāo):
    ◆使學(xué)生探索并初步掌握圓錐體積的計(jì)算方法和推導(dǎo)過程;
    ◆使學(xué)生會應(yīng)用公式計(jì)算圓錐的體積并解決一些實(shí)際問題。
    2、思維能力目標(biāo):
    ◆提高學(xué)生實(shí)踐操作、觀察比較、抽象概括及邏輯推斷的能力,發(fā)展空間觀念。
    3、情感態(tài)度目標(biāo):
    ◆培養(yǎng)學(xué)生的合作意識和探究意識;
    ◆使學(xué)生獲得成功的體驗(yàn),體驗(yàn)數(shù)學(xué)與生活的聯(lián)系。
    三、教學(xué)重點(diǎn)、難點(diǎn):
    重點(diǎn):使學(xué)生初步掌握圓錐體積的計(jì)算方法并解決一些實(shí)際問題
    難點(diǎn):探索圓錐體積方法和推導(dǎo)過程。
    教學(xué)過程:
    一、質(zhì)疑引入
    1 圓錐有什么特征?指名學(xué)生回答。
    2 說一說圓柱體積的計(jì)算公式。
    (1)已知 s、h 求 v
    (2)已知 r、h 求 v
    (3)已知 d、h 求 v
    3 我們已經(jīng)認(rèn)識了圓錐又學(xué)過圓柱體積的計(jì)算公式,那么圓錐的體積又該如何計(jì)算呢?今天我們就來學(xué)習(xí)圓錐體積的計(jì)算。
    板書課題:圓錐的體積
    二、新課
    (一) 教學(xué)圓錐體積的計(jì)算公式
    1、師:請大家回憶一下,我們是怎樣得到圓柱體積的計(jì)算公式的?
    指名學(xué)生敘述圓柱體積的計(jì)算公式的推導(dǎo)過程:(學(xué)生:圓柱---轉(zhuǎn)化長方體- 長方體的體積公式----推導(dǎo)圓柱體公式)
    2、 教師:那么圓錐的體積該怎樣求呢?能不能也通過學(xué)過的圖形來求呢?
    先讓學(xué)生討論,然后指出:我們可以通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式
    〈1〉學(xué)生獨(dú)立操作
    讓兩名學(xué)生到講臺上做實(shí)驗(yàn)其他學(xué)生觀察,拿出等底等高的圓柱和圓錐各1個,比圓柱體積多的水。先在圓錐里裝滿水,然后倒入圓柱??磶状握冒褕A柱裝滿?
    〈2〉教師教具演示鞏固學(xué)生的操作效果,cai課件演示
    a 屏幕上出示等底、等高
    b 等底、不等高
    c 等高、不等底
    實(shí)驗(yàn)報告單
    實(shí)驗(yàn)器材
    實(shí)驗(yàn)結(jié)果
    等底不等高的圓錐、圓柱
    等高不等底的圓錐、圓柱
    等底等高的圓錐、圓柱
    〈3〉引導(dǎo)學(xué)生發(fā)現(xiàn):
    圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的 1/3 (板書 )
    用字母表示圓錐的體積公式.v錐=1/3sh
    做一做:
    填空:
    等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的( ),圓錐的體積是圓柱的體積的( )已知圓錐的體積是9立方分米,圓柱的體積是( );如果圓柱的體積是12立方分米,那么圓錐的體積是( )。
    (二)運(yùn)用公式,嘗試練習(xí)
    1、要求圓錐的體積,必須知道哪兩個條件?為什么要乘 1/3 ?
    試一試:
    一個圓錐體,底面積是19平方米, 高是12分米。這個圓錐的體積是多少?《圓錐的體積》教學(xué)設(shè)計(jì) 相關(guān)內(nèi)容:第四單元 圓 全單元教案六下第一單元 負(fù)數(shù) 教材分析《圓錐的認(rèn)識》說課《分?jǐn)?shù)乘分?jǐn)?shù)》教后反思《納稅》教案 人教版第十一冊教案百分?jǐn)?shù)(五)折 扣圓柱的'表面積第三單元分?jǐn)?shù)除法:分?jǐn)?shù)除法的意義和整數(shù)除以分?jǐn)?shù)查看更多>> 小學(xué)六年級數(shù)學(xué)教案
    2、思考:求圓錐的體積,還可能出現(xiàn)那些情況?
    (如果已知圓錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)
    練一練
    3、求下面的體積。(只列式不計(jì)算)
    (1)底面半徑是2 厘米,高3厘米。
    3.14×22×3
    (2)底面直徑是6分米,高6分米 。
    3.14×(6 ÷2)2 ×6
    (3)底面周長是12.56厘米,高是6厘米
    3.14×(12.56 ÷6.28)2 ×6
    2、求下面各圓錐的體積如圖(單位厘米)
    (1)底面直徑是8分米,高9分米 (2)底面半徑3分米和高7分米
    通過公式我們發(fā)現(xiàn)計(jì)算圓錐的體積所必須的條件可以是底面積和高
    a、底面積和高
    b、底面半徑和高
    c、底面直徑和高
    d、底面周長和高
    三、鞏固練習(xí)
    1、判斷:
    ⑴、圓錐的體積等于圓住體積的1/3。( )
    ⑵把一個圓柱切成一個圓錐,這個圓錐的體積是圓柱體積的1/3 ( )
    ⑶圓柱的體積比和它等底等高圓錐的體積大2倍。( )
    ⑶一個圓柱與一個圓錐的底面積和體積相等,那么圓錐的高是圓柱高的
    2、填空
    ⑴一個圓錐與一個圓柱等底等高,已知圓錐的體積是 18 立方米,圓柱的體積是( )。
    ⑵一個圓錐與一個圓柱等底等體積,已知圓柱的高是 12 厘米, 圓錐的高是( )。
    ⑶一個圓錐與一個圓柱等高等體積,已知圓柱的底面積是 314 平方米,圓錐的底面積是( )。
    3、拓展練習(xí)
    工地上有一些沙子,堆起來近似于一個圓錐,通過測量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))
    (引導(dǎo)學(xué)生說出怎樣測量沙堆的底面的周長、直徑、和高。)
    用兩根竹竿平行地放在沙堆兩側(cè),測得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。
    圓錐的體積課件(篇2)
    1、認(rèn)知目的:
    (1)讓學(xué)生認(rèn)識圓錐,掌握它的特征。
    (2)理解圓錐的體積計(jì)算公式的推導(dǎo),并能靈活運(yùn)用公式計(jì)算圓錐的體積。
    2、能力目的:
    發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生觀察,動手操作,總結(jié)規(guī)律的能力。
    3、情感目的:
    創(chuàng)造和諧的師生關(guān)系,調(diào)動學(xué)生的非智力因素,激發(fā)學(xué)生的學(xué)習(xí)興趣。
    教學(xué)重點(diǎn):
    建立圓錐體的表象,概括圓錐體的特征,并能運(yùn)用公式計(jì)算圓錐體的體積。
    教學(xué)難點(diǎn):
    理解等底等高的圓錐體和圓柱體的關(guān)系,以及圓錐體積公式的推導(dǎo)過程。
    教學(xué)準(zhǔn)備:
    1、多媒體計(jì)算機(jī)軟、硬件一套。
    2、學(xué)生實(shí)驗(yàn)用圓柱、圓錐容器十套,紅色溶液一桶。
    3、幻燈機(jī),圓錐體實(shí)物如:小丑帽、重錘等。
    教學(xué)過程:
    一、復(fù)習(xí)準(zhǔn)備:
    1、圓柱的體積計(jì)算公式是什么?
    2、已知一個圓柱的半徑是2厘米,高是5厘米,它的體積是多少?
    二、導(dǎo)出新課:
    我們已經(jīng)學(xué)習(xí)過了長方體和正方體及圓柱體的體積,在實(shí)際生活中,經(jīng)常會遇到另一種物體(出示圓錐體實(shí)物如:小丑帽、重錘),這種形體叫圓錐體。你們在生活中見過這樣的物體嗎?(請學(xué)生回答)這節(jié)課我們重點(diǎn)研究圓錐的體積。(板書課題:圓錐的體積)
    三、新授:
    1、學(xué)生通過對圓錐實(shí)物及電腦圖形的觀察,多角度多種實(shí)物中得到對圓
    錐感性認(rèn)識,在建立了感性認(rèn)識的基礎(chǔ)上,師生共同總結(jié)出圓錐的特征是:它只有一個底面;這個底面是一個圓;它有一個頂點(diǎn)。
    教師拿出已準(zhǔn)備好的圓錐教具,將其一分為二,叫學(xué)生觀察圓錐的高,指出從頂點(diǎn)到底面圓心的距離叫圓錐的高。
    2、紹各部分的名稱(用電腦出示圓錐圖形)
    3、圓錐體積公式的推導(dǎo):
    通過分組實(shí)驗(yàn)讓學(xué)生自己發(fā)現(xiàn)圓柱、圓錐在等底等高時的體積關(guān)系。在實(shí)驗(yàn)前教師提出實(shí)驗(yàn)的要求和實(shí)驗(yàn)要解決的問題。
    問題:(1)圓錐與圓柱是否等底等高?
    (2)倒了幾次才能倒?jié)M空圓柱?
    (3)這個實(shí)驗(yàn)說明等底等高的圓柱、圓錐體積有怎樣的關(guān)系?
    要求:(1)分五人一組,相互合作,共同完成實(shí)驗(yàn)。
    (2)教師每組給一個中空、未封底的圓錐,學(xué)生自己動手制作一個與它等底等高的圓柱。制作的圓柱也不封底。
    (3)將圓錐裝滿溶液,然后倒入圓柱里,裝滿圓柱為止。
    實(shí)驗(yàn)結(jié)束后,讓學(xué)生自己總結(jié)得出結(jié)論,教師根據(jù)學(xué)生得出的結(jié)論得出Ⅴ錐=
    圓錐的體積課件(篇3)
    教學(xué)內(nèi)容:
    九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊第48-50頁。
    教學(xué)目的:
    1.使學(xué)生理解和掌握求圓錐體積的計(jì)算公式,并能正確求出圓錐的體積。
    2.培養(yǎng)學(xué)生初步的空間觀念、邏輯思維能力、動手操作能力。
    3.向?qū)W生滲透知識間"相互轉(zhuǎn)化"的辯證唯物主義思想,在聯(lián)系實(shí)際中對學(xué)生進(jìn)行學(xué)習(xí)目的方面的思想教育。
    教學(xué)重點(diǎn):
    圓錐的體積計(jì)算。
    教學(xué)難點(diǎn):
    圓錐的體積公式推導(dǎo)。
    教學(xué)關(guān)鍵:
    圓錐的體積是與它等底等高的圓柱體積的二分之一。
    教具準(zhǔn)備:
    投影儀、小黑板、等底等高的圓柱和圓錐空心實(shí)物各一個。圓臺、棱臺實(shí)物各一個。
    學(xué)具準(zhǔn)備:
    等底等高的圓柱和圓錐空心實(shí)物各一個
    教學(xué)過程:
    一、復(fù)習(xí)
    1.圓柱的體積公式是什么?
    2.底面積是19平方厘米,高是20厘米,求圓柱的體積是多少立方厘米?
    [說明:圓錐的體積,是與它等底等高的圓柱體積的1/3。因此,先復(fù)習(xí)圓柱的體積計(jì)算方法,抓住所學(xué)知識間的內(nèi)在聯(lián)系,為學(xué)習(xí)圓錐的體積計(jì)算方法作了很好的鋪墊。]
    師:剛才我們復(fù)習(xí)了圓柱的體積公式并應(yīng)用這個公式計(jì)算出了圓柱的體積,那么圓柱和圓錐有什么關(guān)系呢?這節(jié)課我們就來研究圓錐的體積。
    板書:圓錐的體積
    [說明:設(shè)疑激趣,激發(fā)學(xué)生探求新知識的欲望。l
    二、新課教學(xué)
    師:請大家把書翻到第48頁,想一想:圓錐的底面是什么形狀的?什么是圓錐的高?(生看書)
    投影出示下圖:
    師:圓錐的底面是什么形狀?
    生:圓錐的底面是圓形的。
    師:對。什么是圓錐的高呢?
    生:從圓錐的頂點(diǎn)到底面圓心的距離是圓錐的高。
    師:你能上來指出這個圓錐的高嗎?
    師:很好,因?yàn)閳A錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。
    師演示:將剛才出示的圓錐圖上的高往外移,標(biāo)上字母h,如圖所示:
    師:有人認(rèn)為,(指母線)這條就是圓錐的高,你們說對嗎?為什么?
    生:我認(rèn)為不對,因?yàn)楦呤侵笍膱A錐的頂點(diǎn)到底面圓心的距離,它不在圓心上,所以不是圓錐的高。
    師:說得很好。在我們?nèi)粘I钪?你們看到過哪些物體是圓錐形狀的?(略)
    師:對。在生活中有很多圓錐形的物體。(出示實(shí)物圖)如:沙堆、糧堆、鉛錘,還有圓柱型鉛筆用卷刀卷過的部分等等。誰上來指一指這支鉛筆圓錐型部分?(略)
    師:對圓錐我們已經(jīng)有了一個初步的認(rèn)識?,F(xiàn)在,我們一起來看一組圈,請你判斷這些圖中哪些是圓錐?哪些不是?為什么?
    投影出示下列圖形:
    生:我認(rèn)為②、③、④三個圖是圓錐,①、⑤兩個圖不是。
    師:第②、③兩個圖與第④個圖并不一樣,為什么說它們也是圓錐呢?
    生:我想第②個圖是倒放的圓錐,第③個圖是斜放的圓錐。
    師:說得有道理。你能不能將這個圓錐擺正。
    (一名學(xué)生到前面旋轉(zhuǎn)投影片,將圓錐圖形一一擺正)
    師:拿出實(shí)物模型(圓臺、棱臺)。說:大家看,①、⑤兩個圖其實(shí)就是這兩個物體,它們究竟叫什么呢?等你們以后學(xué)了更多的知識就知道了。
    [說明:圓錐的認(rèn)識,教師是讓學(xué)生通過看書自學(xué)去獲得的。教師通過不斷設(shè)疑,層層深入,幫助學(xué)生對書上內(nèi)容逐步深化;然后,以生活中的圓錐形物體,進(jìn)一步幫助學(xué)生加深認(rèn)識;最后,用一組判斷題要學(xué)生鑒別哪些是圓錐,哪些不是圓錐,符合學(xué)生的認(rèn)知規(guī)律,從而達(dá)到知識的強(qiáng)化目的。]
    師:剛才我們已經(jīng)認(rèn)識了圓錐。現(xiàn)在我們再來研究圓錐的體積(出示教具)。這是一個空心圓錐,這是一個空心圓柱。它們之間有什么關(guān)系呢?我們先來比較它們的底面。(師演示:將圓錐和圓柱的底面合在一起,完全重合。)
    生:它們的底面是相等的。
    師:我們再來比較它們的高。(師演示:用一把直尺架在兩者之間,然后分別量一量它們的高。)
    生:它們的高也是相等的。
    師:那也就是說,這兩個圓柱和圓錐是等底等高的。下面我們采用實(shí)驗(yàn)的方法來推導(dǎo)圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,注意大拇指不要伸進(jìn)去,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M。現(xiàn)在我們分小組做實(shí)驗(yàn),大家邊做邊討論實(shí)驗(yàn)要求,如有困難可以看書第23頁。
    出示小黑板:
    1.實(shí)驗(yàn)器材中,圓錐的底面和圓柱的底面有什么關(guān)系?官們的高有什么關(guān)系?
    2.圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?
    3.圓錐的體積怎么算?體職公式是怎樣的?
    學(xué)生分組做實(shí)驗(yàn),老師巡回指導(dǎo)。
    師:我們先來回答第一個問題。在你們做實(shí)驗(yàn)用的
    器材中,圓錐的底面和圓柱的底面有什么關(guān)系?它們的高有什么關(guān)系?
    生:在實(shí)驗(yàn)器材中,圓錐的底面和圓柱的底面是相等的,它們的高也是相等的。
    師:我們再來討論第2個問題。圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?
    生:圓柱的體積是圓錐體積的3倍。
    生:圓錐的體積是同它等底等高的圓柱體權(quán)的1/3。
    板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。
    師:得出這個結(jié)論的同學(xué)請舉手。(略)你們是怎么得出這個結(jié)論的呢?
    生:我們先在圓錐內(nèi)裝滿水,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。
    師:說得很好。那么圓錐的體積怎么算呢?
    生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。
    師:誰能說說圓錐的體積公式。
    生:圓錐的體積公式是V=1/3Sh。
    師:請大家把書翻到第49頁,將你認(rèn)為重要的字、詞、句圈圈劃劃,并說說理由。
    生:我認(rèn)為"圓錐的體積V等于和它等底等高的圓柱體積的三分之一。"這句話很重要。
    生:我認(rèn)為這句話中"等底等高"和"三分之一"這幾個字特別重要。
    師:大家說得很對,那么為什么這幾個字特別重要?如果底和離不相等的圓錐和圓柱有沒有三分之一這個關(guān)系呢?我們也來做個實(shí)驗(yàn)。這兩個是等底不等高的圓錐和圓柱,邊兩個是等高不等底的圓錐和圓柱,我請兩個同學(xué)上來用剛才做實(shí)驗(yàn)的方法試試看。
    (請兩名學(xué)生上講臺示范實(shí)驗(yàn))
    師:現(xiàn)在大家看清楚了嗎?等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。
    生齊答:不是。
    [說明:變教具為學(xué)具,讓學(xué)生親自動手實(shí)驗(yàn),使聽黨、視覺、觸覺等各種感官一起參與活動,通過自己親自動手操作,努力去探索圓錐體積的計(jì)算方法,這樣的學(xué)習(xí),學(xué)得活,記得牢,既發(fā)揮了教師的主導(dǎo)作用,又充分體現(xiàn)了學(xué)生的主體地位。]
    師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關(guān)系,口答三道題目。師:出示小黑板,口算。
    求與下面圓柱等底等高的圓錐體的體積。
    1.圓柱體的體積是3立方厘米;
    2.圓柱體的體積是2.4立方分米;
    3.圓柱體的體積是1/2立方米;"
    生答略。
    師:大家回答得很好。接下來,請大家用圓錐的體積計(jì)算公式來解答一道應(yīng)用題。師出示第50頁例1。
    例l :一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
    (兩名學(xué)生板演,老師巡視)
    師:這位同學(xué)做的對不對?
    生:對!
    師:和他做的一-樣的同學(xué)請舉手。(絕大多數(shù)同學(xué)舉手)
    師:那么這位同學(xué)做錯在哪里呢?(指那位做錯的同學(xué)做的)
    生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。
    師:對了。剛才我們通過實(shí)驗(yàn)4知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導(dǎo)出圓錐的體積計(jì)算公式,即V=1/3Sh。我們在用這個公式計(jì)算圓錐的體積時,要特別注意,1/3不能漏掉。
    三、鞏固練習(xí)
    師:現(xiàn)在我們一起來做填表練習(xí)。
    出示小黑板:
    1. 填表:
    底面積S (平方米) 高h(yuǎn)(米) 圓錐的體積(立方米)
    15 9 ()
    16 0.6 ()
    師:兩題都填對了。接下來我要考考你們,看是不是掌握了今天的知識。
    2.求下面各圓錐的體積。
    (1)半徑是3米,高是2米。
    (2)直徑是4分米,高是6分米。
    (3)周長是6,28厘米,高是3厘米。
    3.有一個高9厘米,底面積是20平方厘米的圓柱內(nèi)裝滿水,用一個與它等底等高的圓錐擠壓,最多能擠出多少水?圓柱內(nèi)還剩多少水?(邊做實(shí)驗(yàn)邊討論)
    [說明:練習(xí)有層次,形式多樣。最后一個層次的練習(xí),又回到動手實(shí)驗(yàn)上,而且強(qiáng)化的仍然是本節(jié)課最基本、最關(guān)鍵的內(nèi)容。]
    師:這節(jié)課我們認(rèn)識了圓錐,并推導(dǎo)出了圓錐的體積計(jì)算公式?;厝ヒ院?先回憶一下今天學(xué)過的內(nèi)容,想一想,在運(yùn)用V=1/3Sh這個公式算圓錐體積時,要特別注意什么。
    圓錐的體積課件(篇4)
    教學(xué)內(nèi)容:
    九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊P32頁。
    教學(xué)目標(biāo):
    1、通過練習(xí),使學(xué)生進(jìn)一步理解和掌握圓錐體積公式,能運(yùn)用公式正確迅速地計(jì)算圓錐的體積。
    2、通過練習(xí),使學(xué)生進(jìn)一步深刻理解圓柱和圓錐體積之間的關(guān)系。
    3、進(jìn)一步培養(yǎng)學(xué)生將所學(xué)知識運(yùn)用和服務(wù)于生活的能力。
    教學(xué)重點(diǎn):
    靈活運(yùn)用圓柱圓錐的有關(guān)知識解決實(shí)際問題。
    教學(xué)難點(diǎn):
    同教學(xué)難點(diǎn)。
    設(shè)計(jì)理念:
    練習(xí)的過程是學(xué)生將所學(xué)知識內(nèi)化、升華的過程,練習(xí)過程中既有基礎(chǔ)知識的合理鋪墊,又有不同程度的提高,練習(xí)的內(nèi)容有明顯的階梯性。力求使不同層次的學(xué)生都學(xué)有收獲。
    教學(xué)步驟、教師活動、學(xué)生活動
    一、復(fù)習(xí)鋪墊、內(nèi)化知識。1. 圓錐體的體積公式是什么?我們是如何推導(dǎo)的?
    2.圓柱和圓錐體積相互關(guān)系填空,加深對圓柱和圓錐相互關(guān)系的理解。
    (1)一個圓柱體積是18立方厘米,與它等底等高的圓錐的體積是()立方厘米。
    (2)一個圓錐的體積是18立方厘米,與它等底等高的圓柱的體積是()立方厘米。
    (3)一個圓柱與和它等底等高的圓錐的體積和是144立方厘米。圓柱的體積是()立方厘米,圓錐的體積是()立方厘米。
    3.求下列圓錐體的體積。
    (1)底面半徑4厘米,高6厘米。
    (2)底面直徑6分米,高8厘米。
    (3)底面周長31.4厘米.高12厘米。
    4、教師根據(jù)學(xué)生練習(xí)中存在的問題,集體評講。同座位的同學(xué)先說一說圓錐體積公式的推導(dǎo)過程。
    學(xué)生獨(dú)立練習(xí),互相批改,指出問題。
    學(xué)生交流一下這幾題在解題時要注意什么?
    二、豐富拓展、延伸練習(xí)。1.拓展練習(xí):
    (1)把一個圓柱體木料削成一個最大的圓錐體木料,圓錐的體積占圓柱體的幾分之幾?削去的部分占圓柱體的幾分之幾?
    (2)一個圓柱體比它等底等高的圓錐體積大48立方厘米,圓柱體和圓錐體的體積各是多少?
    2.完成31頁第5題。討論下列問題:
    (1)圓柱和圓錐體積相等、底面積也相等,圓柱的高和圓錐的高有什么關(guān)系?
    (2)圓柱和圓錐體積相等、高也相等,圓柱的底面積和圓錐的底面積有什么關(guān)系?
    3.分組討論:圓柱的底面半徑是圓錐的2倍,圓錐的高是圓柱的高的2倍,圓柱和圓錐的體積之間有什么倍數(shù)關(guān)系?
    學(xué)生分組討論,教師參與其中,以有疑問的方式參與討論。
    三、充分提高,全面升華。
    1.展示一個圓錐形的沙堆,小組討論一下用什么方法可以測量出它的體積。
    2.教師給每一組一小袋米。讓學(xué)生在桌子上堆成一個近似的圓錐體,通過合作測量的形式求出它的體積。
    3.討論練習(xí)八蒙古包所占空間的大小的方法。
    (1)蒙古包是由哪幾個部分組成的?
    (2)上部的圓錐和下部的圓柱有哪些相同的地方,有哪些不同的地方?
    (3)同學(xué)們能獨(dú)立地求出蒙古包所占的空間的大小嗎?請?jiān)囈辉嚒?BR>    4.交流一下本節(jié)課的收獲。
    學(xué)生分組討論后動手實(shí)踐并計(jì)算。
    學(xué)生先交流。
    四、全課總結(jié),內(nèi)化知識。
    1.提問:
    (1)同學(xué)們掌握了圓錐體的哪些知識?
    (2)你用圓錐體的體積的有關(guān)知識解決現(xiàn)實(shí)生活中的哪些問題?
    2.學(xué)有余力的同學(xué)思考38頁思考題。
    3.作業(yè):練習(xí)八6、7、8
    學(xué)生獨(dú)立練習(xí)
    圓錐的體積課件(篇5)
    教學(xué)內(nèi)容:
    《圓錐的體積》是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十一冊第三單元的內(nèi)容。
    教學(xué)目標(biāo):
    1、通過讓學(xué)生小組合作探究,利用不同的方法測量出圓錐的體積。體驗(yàn)到計(jì)算圓錐體積的計(jì)算公式v=1/3sh是最簡便的方法。
    2、鍛煉學(xué)生的操作能力,估算能力,評價能力,更好的發(fā)展他們的創(chuàng)新能力。
    3、培養(yǎng)學(xué)生的合作意識及主動探索知識的精神。
    教學(xué)重點(diǎn):
    讓學(xué)生自己親身體驗(yàn)到計(jì)算圓錐體積的不同方法。從而理解計(jì)算公式v=1/3sh,并感受到計(jì)算公式的簡便。
    教學(xué)難點(diǎn):能利用不同方法計(jì)算不同物體的體積。知識的活學(xué)活用。
    教學(xué)準(zhǔn)備:
    1、個學(xué)生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。
    2、教學(xué)軟件。
    教學(xué)流程:
    一、創(chuàng)設(shè)情景,激趣引新。
    1、首先教師手中拿一圓柱體問:“同學(xué)們,老師想知道這個圓柱體的體積你們能幫助我嗎?”
    (學(xué)生踴躍舉手說明。可以先測量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
    2、教師表示贊同,并抓住這一契機(jī)拿出于剛才圓柱等底等高的圓錐,問:“那老師這里還有一個圓錐體,它的體積應(yīng)該怎樣計(jì)算呢?你們知道嗎?”(學(xué)生齊答不)那你們想不想研究呢?(學(xué)生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計(jì)算。
    〈設(shè)計(jì)意圖:通過以舊引新,不僅讓學(xué)生感受到圓錐與圓柱的聯(lián)系,而且還能體驗(yàn)得到新知的親切。從而產(chǎn)生學(xué)習(xí)新知的欲望?!?BR>    二、小組合作,探究學(xué)習(xí)。
    1、動手操作,測量圓錐體的體積。
    要求:每組同學(xué),利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內(nèi)的圓錐體的體積。測量物體是容器的厚度不計(jì)。
    〈全體學(xué)生在動手操作,互相商量解決問題的辦法。教師巡回指導(dǎo)。課堂呈現(xiàn)小組探究學(xué)習(xí)的熱烈場面?!?BR>    3、分組匯報不同的方法。
    〈學(xué)生在匯報時可邊講解邊示范〉
    方法一:可以利用量杯。首先把圓錐體容器內(nèi)裝滿水,然后把它倒入量杯內(nèi),我們看到水面的刻度就是水的體積也就是圓錐體的體積。
    方法二:利用手中的一立方厘米的小木塊進(jìn)行估算。
    方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的體積了。
    方法四:把圓錐體內(nèi)裝滿大米、沙子或水,然后將它到入與它等底等高的圓柱體容器里。發(fā)現(xiàn)到了3次正好到慢。也就是說,圓錐體的體積等于與它等底等高的圓柱體的三分之一。用字母表示為:v=1/3sh
    〈設(shè)計(jì)意圖:通過討論研究和動手操作,發(fā)展學(xué)生的創(chuàng)新能力,和解決實(shí)際問題的能力。〉
    (1)在講解第四個方法時,教師可以向?qū)W生質(zhì)疑,在操作此過程時有一個非常重要的前提條件是什么?為什么圓錐體的體積等于與它等底等高圓柱體體積的三分之一?
    (2)學(xué)生再次在小組內(nèi)操作探究。
    (3)匯報結(jié)論。
    (4)微機(jī)演示。
    當(dāng)?shù)鹊撞坏雀邥r,當(dāng)?shù)雀卟坏鹊讜r,當(dāng)?shù)缀透叨疾幌嗟葧r,出現(xiàn)的結(jié)果是怎樣的。
    〈設(shè)計(jì)意圖:通過學(xué)生探究與微機(jī)演示,使學(xué)生直觀的感受圓錐體與圓柱體之間關(guān)系。加深對圓錐體體積計(jì)算公式的理解?!?BR>    4、評價以上各種辦法
    同學(xué)們的結(jié)論是用公式計(jì)算比較方便。
    三、解決實(shí)際問題
    (問題一)
    1、各小組量一量,算一算自己組內(nèi)的圓錐體的體積。(測量,計(jì)算時都要保留整數(shù))
    2、匯報結(jié)果。
    先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶劑可看作體積)
    (問題二)
    1、現(xiàn)知道手中的圓錐體每立方厘米約裝0.9克大米,計(jì)算這個圓錐體容器可裝多少克大米?
    2、匯報結(jié)果。
    用每立方厘米裝大米的克數(shù)乘圓錐的體積。算式:0.9x262≈236克
    3、驗(yàn)證計(jì)算結(jié)果
    用稱稱一稱,比較一下結(jié)果。
    4、討論兩次結(jié)果為什么不同。
    由于測量時厚度不計(jì),計(jì)算時是近似值。都存在誤差。
    〈設(shè)計(jì)意圖:通過測量,計(jì)算等環(huán)節(jié),發(fā)展學(xué)生的應(yīng)用意識及估算的能力。〉
    (問題三)
    利用圓錐體積公式計(jì)算。
    (1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
    (問題四)
    計(jì)算不規(guī)則物體體積或容積。(直說出計(jì)算的方法即可)
    1、用什么方法計(jì)算出葫蘆能裝多少水?
    2、胡蘿卜的體積怎樣計(jì)算?
    3、不規(guī)則的零件體積計(jì)算?
    〈設(shè)計(jì)意圖:結(jié)合生活實(shí)際讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系。及解決實(shí)際問題的不同方法及策略,培養(yǎng)創(chuàng)新能力?!?BR>    四、總結(jié)全課
    說說你的收獲,鼓勵學(xué)生學(xué)習(xí)知識要活學(xué)活用,大膽動腦,勇于創(chuàng)新。