以下是由出國留學(xué)網(wǎng)的編輯為您收集整理的“有理數(shù)的乘法教案”。每個(gè)老師都需要為每堂課準(zhǔn)備教案和課件,以便將教學(xué)內(nèi)容設(shè)計(jì)得更加完善。學(xué)生的反饋可以幫助教師調(diào)整教學(xué)方案,提高教學(xué)效果。如果您認(rèn)為這份資料對您有幫助,請與您的朋友和同事分享!
有理數(shù)的乘法教案(篇1)
有理數(shù)的乘法教案
學(xué)習(xí)目標(biāo):
1、理解有理數(shù)的運(yùn)算法則;能根據(jù)有理數(shù)乘法運(yùn)算法則進(jìn)行有理的簡單運(yùn)算
2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗(yàn)證能力。
3、培養(yǎng)語言表達(dá)能力。調(diào)動(dòng)學(xué)習(xí)積極性,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
學(xué)習(xí)重點(diǎn):有理數(shù)乘法
學(xué)習(xí)難點(diǎn):法則推導(dǎo)
教學(xué)方法:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合
教學(xué)過程
一、學(xué)前準(zhǔn)備
計(jì)算:
(1)(一2)十(一2)
(2)(一2)十(一2)十(一2)
(3)(一2)十(一2)十(一2)十(一2)
(4)(一2)十(一2)十(一2)十(一2)十(一2)
猜想下列各式的值:
(一2)×2(一2)×3
(一2)×4(一2)×5
二、探究新知
1、自學(xué)有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空。
2、觀察以上各式,結(jié)合對問題的研究,請同學(xué)們回答:
(1)正數(shù)乘以正數(shù)積為__________數(shù),(2)正數(shù)乘以負(fù)數(shù)積為__________數(shù),
(3)負(fù)數(shù)乘以正數(shù)積為__________數(shù),(4)負(fù)數(shù)乘以負(fù)數(shù)積為__________數(shù)。
提出問題:一個(gè)數(shù)和零相乘如何解釋呢?
《1.4.1有理數(shù)的乘法》同步練習(xí)含解析
1、若有理數(shù)a,b滿足a+b
A、a,b都是正數(shù)
B、a,b都是負(fù)數(shù)
C、a,b中一個(gè)正數(shù),一個(gè)負(fù)數(shù),且正數(shù)的絕對值大于負(fù)數(shù)的絕對值
D、a,b中一個(gè)正數(shù),一個(gè)負(fù)數(shù),且負(fù)數(shù)的絕對值大于正數(shù)的絕對值
5、若a+b
A、a>0,b>0
B、a
C、a,b兩數(shù)一正一負(fù),且正數(shù)的絕對值大于負(fù)數(shù)的絕對值
D、a,b兩數(shù)一正一負(fù),且負(fù)數(shù)的絕對值大于正數(shù)的絕對值于0
《1.4.1.2有理數(shù)的乘法運(yùn)算律》課時(shí)練習(xí)含答案
2、大于—3且小于4的所有整數(shù)的積為()
A、—12 B、12 C、0 D、—144
2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,這個(gè)運(yùn)算運(yùn)用了()
A、加法結(jié)合律
B、乘法結(jié)合律
C、分配律
D、分配律的逆用
3、下列運(yùn)算過程有錯(cuò)誤的個(gè)數(shù)是()
①×2=3—4×2
②—4×(—7)×(—125)=—(4×125×7)
③9×15=×15=150—
④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50
A、1 B、2 C、3 D、4
4、絕對值不大于2 015的所有整數(shù)的積是。
5、在—6,—5,—1,3,4,7中任取三個(gè)數(shù)相乘,所得的積最小是,最大是。
6、計(jì)算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的結(jié)果為。
7、計(jì)算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的結(jié)果是。
有理數(shù)的乘法教案(篇2)
教學(xué)目的:
1、要求學(xué)生會(huì)進(jìn)行有理數(shù)的加法運(yùn)算;
2、使學(xué)生更多經(jīng)歷有關(guān)知識(shí)發(fā)生、規(guī)律發(fā)現(xiàn)過程。
有理數(shù)的乘法是小學(xué)所學(xué)乘法運(yùn)算的延續(xù),也是在學(xué)習(xí)了有理數(shù)的加法法則與有理數(shù)的減法法則的基礎(chǔ)上所學(xué)習(xí)的,所以應(yīng)注意到各種法則間的必然聯(lián)系,在本節(jié)中應(yīng)注重學(xué)生學(xué)習(xí)的過程,多讓學(xué)生經(jīng)歷知識(shí)、規(guī)律發(fā)現(xiàn)的過程。在學(xué)習(xí)中應(yīng)掌握有理數(shù)的乘法法則。
2、知識(shí)形成:
(引例)一只小蟲沿一條東西向的跑道,以每分鐘3米的速度爬行。
情形1:小蟲向東爬行2分鐘,那么它現(xiàn)在位于原來位置的哪個(gè)方向?相距出發(fā)地點(diǎn)多少米?
情形2:小蟲向西爬行2分鐘,那么它現(xiàn)在位于原來位置的哪個(gè)方向?相距出發(fā)地點(diǎn)多少米?
發(fā)現(xiàn):當(dāng)我們把中的一個(gè)因數(shù)3換成它的相反數(shù)-3時(shí),所得的積是原來的積6的相反數(shù)-6
同理,如果我們把中的一個(gè)因數(shù)2換成它的相反數(shù)-2時(shí),所得的積是原來的積6的相反數(shù)-6
反數(shù)-2時(shí),所得的積又會(huì)有什么變化?
當(dāng)然,當(dāng)其中的一個(gè)因數(shù)為0時(shí),所得的積還是等于0。
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對值相乘;
任何數(shù)與零相乘,都得零。
四、知識(shí)小結(jié):
本節(jié)課從實(shí)際情形入手,對多種情形進(jìn)行分析,從一般中找到規(guī)律,從而得到有關(guān)有理數(shù)乘法的運(yùn)算法則。在運(yùn)算中應(yīng)強(qiáng)調(diào)注意如何正確得到積的結(jié)果。
六、每日預(yù)題:
1、小學(xué)多學(xué)過哪些乘法的運(yùn)算律?
2、在對有理數(shù)的簡便運(yùn)算中,一般應(yīng)考慮到哪些可能的情況?
有理數(shù)的乘法教案(篇3)
積的符號(hào) ;
積的符號(hào) 。
2完成下面填空:
(2)(-10)×(- )×(-0.1)× 6 =________
(3)(-10)×(- )×(-0.1)×(-6)=________
(4)(-5)×(- )× 3 ×(-2)× 2=________
(5)(-5)×(-8.1)× 3.14 × 0=________
(1)8+(-0.5)×(-8)× (2)(-3)× ×(- )×(- )
(3)(- )× 5 × 0 ×(- ) (5) (-6)×(+37) × (- )×(- )
4.計(jì)算:(1)(-4)×(-7)×(-25) (2)(- )×8×(- )
(3)(-0.5)×(-1)× ×(-8) (4)(-5)-(-5)× ×(-4).
(5)(-3)×(7)×-3 ×(-6) (6)(-1)×(-7)+6×(-1)×
有理數(shù)的乘法教案(篇4)
一、知識(shí)與能力
掌握有理數(shù)乘法以及乘法運(yùn)算律,熟練進(jìn)行有理數(shù)乘除運(yùn)算,發(fā)展觀察,歸納等方面的能力,用相關(guān)知識(shí)解決實(shí)際問題的能力
二、過程與方法
經(jīng)歷歸納,總結(jié)有理數(shù)乘法,除法法則及乘法運(yùn)算律的過程,會(huì)觀察,選擇適當(dāng)?shù)?、較簡便的方法進(jìn)行有理數(shù)乘除運(yùn)算
三、情感、態(tài)度、價(jià)值觀
培養(yǎng)學(xué)生學(xué)習(xí)的自信心,上進(jìn)心,通過用乘除運(yùn)算解決簡單的實(shí)際問題,讓學(xué)生明確學(xué)習(xí)教學(xué)的目的是學(xué)以致用,從而培養(yǎng)學(xué)生的主動(dòng)性、積極性
四、教學(xué)重難點(diǎn)
一、重點(diǎn):熟練進(jìn)行有理數(shù)的乘除運(yùn)算
二、難點(diǎn):正確進(jìn)行有理數(shù)的乘除運(yùn)算
預(yù)習(xí)導(dǎo)學(xué)
通過看課本§1.4的內(nèi)容,歸納有理數(shù)的乘法法則以及乘法運(yùn)算律
五、教學(xué)過程
一、創(chuàng)設(shè)情景,談話導(dǎo)入
我們已經(jīng)學(xué)習(xí)了有理數(shù)的乘除法,同學(xué)們歸納,總結(jié)一下有理數(shù)的乘法法則以及乘法運(yùn)算律
二、精講點(diǎn)撥質(zhì)疑問難
根據(jù)預(yù)習(xí)內(nèi)容,同學(xué)們回答以下問題:
1.有理數(shù)的乘法法則:
(1)同號(hào)兩數(shù)相乘___________________________________
(2)異號(hào)兩數(shù)相乘_____________________________________
(3)0與任何自然數(shù)相乘,得____
2.有理數(shù)的乘法運(yùn)算律:
(1)乘法交換律:ab=_________
(2)乘法結(jié)合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理數(shù)的除法法則:
除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的__________
比較有理數(shù)的乘法,除法法則,發(fā)現(xiàn)_________可能轉(zhuǎn)化為__________
三、課堂活動(dòng)強(qiáng)化訓(xùn)練
某公司去年1~3月份平均每月虧損1.5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1.7萬元,11~12月份平均每月虧損2.3萬元,這個(gè)公司去年總的盈虧情況如何?
注:學(xué)生分組討論練習(xí),教師在巡視過程中,引導(dǎo)、輔導(dǎo)部分基礎(chǔ)較差的學(xué)生后,各小組進(jìn)行交流,總結(jié)
四、延伸拓展,鞏固內(nèi)化
例2.(1)若ab=1,則a、b的關(guān)系為()
(2)下列說法中正確的個(gè)數(shù)為( )
0除以任何數(shù)都得0
②如果=-
1,那么a是非負(fù)數(shù)若若⑤(c≠0)⑥()⑦1的倒數(shù)等于本身
A 1個(gè)B 2個(gè)C 3個(gè)D 4個(gè)
(3)兩個(gè)不為零的有理數(shù)相除,如果交換被除數(shù)與除數(shù)的關(guān)系,它們的商不變( )
A兩數(shù)相等B兩數(shù)互為相反數(shù)
C兩數(shù)互為倒數(shù)D兩數(shù)相等或互為相反數(shù)
有理數(shù)的乘法教案(篇5)
教材背景:本節(jié)課是有理數(shù)的乘法的第一課時(shí),是學(xué)習(xí)好有理數(shù)乘除法的基礎(chǔ)和關(guān)健。教材安排的內(nèi)容較簡單,從生活實(shí)際背景引入算術(shù)乘法,用相反意義的量過渡到負(fù)數(shù)與正數(shù)的乘法,通過讓學(xué)生觀察發(fā)現(xiàn)"把一個(gè)因數(shù)換成它的相反數(shù),所得的積是原來積的相反數(shù)".接著安排了"試一試"讓同學(xué)自己體會(huì)演繹推理得出正數(shù)與負(fù)數(shù),負(fù)數(shù)與負(fù)數(shù)相乘,任何數(shù)與零相乘的規(guī)律,進(jìn)而討論歸納得出有理數(shù)乘法法則。并配有例習(xí)題讓同學(xué)理解應(yīng)用此法則。最后通過練習(xí)3讓同學(xué)想一想找規(guī)律,得出一個(gè)數(shù)與1及-1相乘積的特征。整篇教材突出了讓學(xué)生自己探索、試驗(yàn)、體驗(yàn)新知識(shí)的產(chǎn)生,規(guī)律的發(fā)現(xiàn),自主探索,主動(dòng)獲得知識(shí)的新教改思想。
知識(shí)目標(biāo):掌握有理數(shù)的乘法法則并會(huì)運(yùn)用它進(jìn)行計(jì)算。
能力目標(biāo):學(xué)會(huì)探究式合理推理,培養(yǎng)構(gòu)建思想和創(chuàng)新意識(shí);訓(xùn)練從特殊到一般歸納推理及合情演繹推理能力。
情感目標(biāo):會(huì)用已學(xué)的知識(shí)探索解決新問題,勇于向自己挑戰(zhàn),開放思維空間,善于合作與交流,提高自主學(xué)習(xí)能力,體驗(yàn)獲得知識(shí)的過程,在生活實(shí)際中感受應(yīng)用數(shù)學(xué)。
兩個(gè)有理數(shù)相乘的符號(hào)法則和有理數(shù)乘法法則的得出及應(yīng)用。
從正數(shù)與正數(shù)相乘過渡到正數(shù)與負(fù)數(shù)相乘及負(fù)數(shù)與負(fù)數(shù)相乘符號(hào)的變化。
因本節(jié)課教學(xué)內(nèi)容較簡單,練習(xí)量不多。為了更好地使數(shù)學(xué)融入生活,使所學(xué)的知識(shí)更貼近學(xué)生的生活實(shí)際,增加了環(huán)保公益廣告引入新課。為了達(dá)到面對全體同學(xué),使不同的人學(xué)習(xí)不同的數(shù)學(xué),本節(jié)課對例習(xí)題進(jìn)行刪補(bǔ),增加了小數(shù)、帶分?jǐn)?shù)的乘法例型,增設(shè)了不同層次的思維訓(xùn)練題組A與思維訓(xùn)練B.
遵循新教改提倡的"以學(xué)生為主體"的精神,讓學(xué)生自己發(fā)現(xiàn)、探索、討論、協(xié)作的主導(dǎo)思想,本節(jié)課采用了"發(fā)現(xiàn)、探究法""分層遞進(jìn)法""分組學(xué)習(xí)""合作與交流"等有利于學(xué)生學(xué)習(xí)教法與學(xué)法。
多媒休課件
(一)看公益廣告,滲透環(huán)保思想,引入新課。
1、復(fù)習(xí)簡單的算術(shù)數(shù)乘法
(1)計(jì)算48×1/2, 5/12×3/5,
(2)全世界每分鐘砍伐森林30公頃,平均每年減少的雨林面積為750萬公頃。50年后全世界將減少雨林面積多少公頃?
(引入環(huán)保問題,放映公益廣告,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)生的環(huán)保意識(shí)。)
(3)你會(huì)計(jì)算(-3)×(+2),(-3)×(-2)嗎?由此引出正數(shù)與負(fù)數(shù)相乘,負(fù)數(shù)與負(fù)數(shù)相乘怎么乘,設(shè)置懸念,提出本節(jié)課要解決的問題。
(二)創(chuàng)設(shè)問題情景,建立數(shù)學(xué)模型,探究新知。
1、老虎從東西方向的直道上以每分鐘100米的速度前進(jìn),請同學(xué)確定
(1)向東走2分鐘后老虎位于原來位置的哪個(gè)方向?相距多少米?
(2)向西走2分鐘后老虎位于原來位置的哪個(gè)方向?相距多少米?
從此問題情景建立數(shù)學(xué)模型,讓同學(xué)畫數(shù)軸寫出算式:100×2=200,(-100)×2=-200.
2、把問題1中的"老虎從東西兩個(gè)方向以每分鐘100米的速度前進(jìn)"改為"一只小蟲從東西方向的跑道以每分鐘3米的速度前進(jìn)",結(jié)果有何變化?大家寫出算式:(+3)×(+2)=6,(-3)×(+2)=-6比較這兩個(gè)算式,有什么發(fā)現(xiàn)?
當(dāng)我們把(+3)×(+2)=6中的一個(gè)因數(shù)"3"換成它的相反數(shù)"-3",所得的積是原來積"6"的相反數(shù)"-6".再看上一題得到的算式100×2=200,(-100)×2=-200,一般地, "一個(gè)因數(shù)換成它的相反數(shù)所得的積是原來積的相反數(shù)".
3、引導(dǎo)學(xué)生觀察所得的兩個(gè)算式的不同,通過小組協(xié)作探究3×(-2),(-3)×(-2),(-3)×0,怎么求,有幾種求法,展現(xiàn)學(xué)生思維的多樣性與廣闊性,培養(yǎng)學(xué)生創(chuàng)新意識(shí)。
4、讓同學(xué)多寫幾個(gè)兩有理數(shù)相乘的算式,小組討論,試著歸納出正數(shù)乘正數(shù),正數(shù)與負(fù)數(shù)相乘積的符號(hào)及積的絕對值如何確定,直觀得出兩個(gè)有理數(shù)相乘的符號(hào)法則,類型,規(guī)律。老師再用圖象符號(hào)顯示出來,使學(xué)生深刻理解兩個(gè)有理數(shù)相乘的符號(hào)法則:"同號(hào)得正,異號(hào)得負(fù)"進(jìn)而幫助學(xué)生結(jié)合絕對值的算術(shù)關(guān)系歸納得出有理數(shù)的乘法法則,并用屏幕顯示"兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對值相乘;任何數(shù)與零相乘,都得零".隨后應(yīng)用此法則計(jì)算,講解課本上的P51例題。
例1(1)(-5)×(-6);(2)(-1/2)×1/4;并補(bǔ)充(3)
解:(1)(-5)×(-6)=+(5×6)=30;
(2)(-1/2)×1/4=-(-1/2×1/4)=-1/8;
(3) =-(5/3×12/5)=-4
強(qiáng)調(diào)學(xué)生應(yīng)用乘法法則時(shí)注意兩點(diǎn)
(1)先確定積的符號(hào)
(2)定積的絕對值即絕對值相乘。使學(xué)生輕松解決本節(jié)課所提出來的重點(diǎn)問題及本節(jié)課的難點(diǎn)。
(三)小組交流,練習(xí)鞏固,演繹應(yīng)用所學(xué)的知識(shí)。
讓同學(xué)做書上的配套練習(xí)P52的1、2、3,演繹應(yīng)用有理數(shù)的乘法法則。通過小組討論,推選代表解答,并回答老師的現(xiàn)場提問,活躍課堂氣氛,增強(qiáng)學(xué)習(xí)積極性與集體榮譽(yù)感。使學(xué)生在交流學(xué)習(xí)中體會(huì)成功的喜悅。
(四)分層次思維訓(xùn)練,使不同的學(xué)生得到不同的發(fā)展。
有理數(shù)的乘法教案(篇6)
本節(jié)是在學(xué)習(xí)了有理數(shù)加法和減法的基礎(chǔ)上,進(jìn)一步將有理數(shù)加減混合運(yùn)算統(tǒng)一成加法運(yùn)算,并通過省略加號(hào)、括號(hào),得出省略括號(hào)的代數(shù)和形式,對于有理數(shù)加減混合運(yùn)算,首先要將混合運(yùn)算的式子寫成省略括號(hào)的代數(shù)和的形式,然后按加法法則和運(yùn)算律進(jìn)行簡便運(yùn)算。本節(jié)內(nèi)容把有理數(shù)的加減混合運(yùn)算融入實(shí)際問題中,既提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,又突出了《標(biāo)準(zhǔn)》對本節(jié)內(nèi)容的特別要求。
學(xué)生是在學(xué)習(xí)了有理數(shù)的乘法第一課時(shí)的基礎(chǔ)上來學(xué)習(xí)這一節(jié)內(nèi)容的。學(xué)生在本節(jié)內(nèi)容的學(xué)習(xí)中可能存在以下方面的困難:
(1)學(xué)生有理數(shù)乘法的法則、運(yùn)算律記憶不牢固;
(2)在實(shí)際做題中不能靈活運(yùn)用乘法運(yùn)算律;
(3)在運(yùn)用乘法運(yùn)算律的過程中不能準(zhǔn)確確定每一步運(yùn)算符號(hào),尤其是乘法的分配律。
本節(jié)課我采用“引導(dǎo)—合作—探究”的教學(xué)模式,從實(shí)際問題出發(fā),通過創(chuàng)設(shè)問題情境,提出探究任務(wù),讓學(xué)生自主探究解決問題,并在解決問題的過程中發(fā)現(xiàn)新問題,并能提出創(chuàng)造性的想法。讓學(xué)生體驗(yàn)探究的全過程,充分體現(xiàn)學(xué)生的主體地位,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生創(chuàng)新精神和合作能力。
熟練有理數(shù)的乘法運(yùn)算并能用乘法運(yùn)算律簡化運(yùn)算。
讓學(xué)生通過觀察、思考、探究、討論,主動(dòng)地進(jìn)行學(xué)習(xí)。
培養(yǎng)學(xué)生語言表達(dá)能力以及與他人溝通、交往能力,使其逐漸熱愛數(shù)學(xué)這門課程。
教法:主要采用實(shí)驗(yàn)探究法、談話法、討論法、多媒體輔助教學(xué)法。讓學(xué)生通過自己動(dòng)腦思考,同學(xué)之間相互討論,來學(xué)習(xí)有理數(shù)的加減混合運(yùn)算,培養(yǎng)學(xué)生的分析、綜合能力以及探索能力和合作精神,有效地突出重點(diǎn),突破難點(diǎn)。讓學(xué)生最大限度地參與到學(xué)習(xí)的全過程。
以小組討論為模式,積極參與合作探究,在小組合作探究中認(rèn)真思考,操作,討論,學(xué)會(huì)合作交流,培養(yǎng)借助團(tuán)隊(duì)力量解決自己無法完成問題的團(tuán)隊(duì)合作意識(shí)。
計(jì)算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教師指出,由上面計(jì)算結(jié)果,可以說明有理數(shù)乘法也同樣有交換律,結(jié)合律和分配律,并讓學(xué)生分別用文字?jǐn)⑹龊秃帜傅拇鷶?shù)式表達(dá)三種運(yùn)算律.
文字?jǐn)⑹觯喝齻€(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積不變。
文字?jǐn)⑹觯阂粋€(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
提問:這里為什么只說“和”呢?3×(5—7)能不能利用分配律?
答:這里的“和”不再是小學(xué)中說的“和”的概念,而是指“代數(shù)和”,3 ×(5—7)可以看成3乘以5與—7的和,當(dāng)然可利用分配律。
提問:如何表達(dá)三個(gè)以上有理數(shù)相乘或一個(gè)數(shù)乘以幾個(gè)有理數(shù)的和時(shí)的運(yùn)算律?
答:乘法交換律:abc=cab=bca,或者說任意交換因數(shù)的位置,積不變;
乘法結(jié)合律:a(bc)d=a(bcd)=……,或者說任意先乘其中幾個(gè)因數(shù),積不變;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的積相加。
繼而教師作如下小結(jié):
(1)小學(xué)學(xué)習(xí)的乘法運(yùn)算律都適用于有理數(shù)乘法。
(2)我們研究數(shù),總是由數(shù)的意義、數(shù)的認(rèn)識(shí)(讀、寫、大小比較等)到數(shù)的運(yùn)算和數(shù)的運(yùn)算律這樣一個(gè)順序進(jìn)行,小學(xué)學(xué)習(xí)的正數(shù)和0是這樣,現(xiàn)在學(xué)習(xí)有理數(shù)也是這樣,將來進(jìn)一步學(xué)習(xí)范圍更大的數(shù)還是這樣。掌握了學(xué)習(xí)的方法,就掌握了自學(xué)的鑰匙,希望予以注意。
計(jì)算(能簡便的盡量簡便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
教師指導(dǎo)學(xué)生看書,精讀多個(gè)有理數(shù)乘法的法則及乘法運(yùn)算律,并強(qiáng)調(diào)運(yùn)算過程中應(yīng)該注意的問題.
1.計(jì)算:
(7)(—7。33)×42。07+(—2。07)(—7。33);
(8)(—53。02)(—69。3)+(—130。7)(—5。02);
在以上設(shè)計(jì)中,我力求體現(xiàn)“以學(xué)生發(fā)展為本”的教學(xué)理念,突出數(shù)學(xué)學(xué)科學(xué)以致用的特征,積極倡導(dǎo)“自主探究”的學(xué)習(xí)方式,讓學(xué)生在開放而富有創(chuàng)新活力的氛圍中學(xué)習(xí),從而落實(shí)學(xué)生的主體地位,促進(jìn)學(xué)生主動(dòng)自主學(xué)習(xí)。
本節(jié)課教學(xué)的基本目的是讓學(xué)生掌握有理數(shù)乘法的符號(hào)法則和運(yùn)算律.為完成這一教學(xué)目標(biāo),可以采用直接傳授的方法,即教師清楚明白地把乘法的符號(hào)法則和乘法的運(yùn)算律告訴學(xué)生,然后通過做習(xí)題來加以鞏固。這種教學(xué)方法具有直截了當(dāng)?shù)奶攸c(diǎn),但不利于開啟學(xué)生思維,更不易使學(xué)生在接受知識(shí)的同時(shí),提高觀察、歸納和概括的能力.因此,我們采取了上述作法。
為了充分發(fā)揮每個(gè)學(xué)生思維的積極性,上述設(shè)計(jì)強(qiáng)調(diào)學(xué)生與教師一起共同參與教學(xué)活動(dòng).只要我們堅(jiān)持把數(shù)學(xué)活動(dòng)過程體現(xiàn)在教學(xué)中,又盡力發(fā)揮學(xué)生的思維積極性,那么學(xué)生所學(xué)到的就不僅是一些數(shù)學(xué)知識(shí),而且會(huì)學(xué)到分析問題和解決問題的一般方法。
有理數(shù)的乘法教案(篇7)
目標(biāo):
1、知識(shí)與技能
使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)的乘法法則,能熟練地進(jìn)行有理數(shù)的乘法運(yùn)算。
2、過程與方法
經(jīng)歷探索有理數(shù)乘法法則的過程,理解有理數(shù)乘法法則,發(fā)展觀察、探究、合情推理等能力,會(huì)進(jìn)行有理數(shù)和乘法運(yùn)算。
重點(diǎn)、難點(diǎn):
1、重點(diǎn):有理數(shù)乘法法則。
2、難點(diǎn):有理數(shù)乘法意義的理解,確定有理數(shù)乘法積的符號(hào)。
過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新
1、由前面的學(xué)習(xí)我們知道,正數(shù)的加減法可以擴(kuò)充到有理數(shù)的加減法,那么乘法是可也可以擴(kuò)充呢?
乘法是加法的特殊運(yùn)算,例如5+5+5=5×3,那么請思考:
(-5)+(-5)+(-5)與(-5)×3是否有相同的結(jié)果呢?本節(jié)我們就探究這個(gè)問題。
3、在一條由西向東的筆直的馬路上,取一點(diǎn)O,以向東的路程為正,則向西的路程為負(fù),如果小玫從點(diǎn)O出發(fā),以5千米的向西行走,那么經(jīng)過3小時(shí),她走了多遠(yuǎn)?
二、合作交流,解讀探究
1、小學(xué)學(xué)過的乘法的意義是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果兩個(gè)數(shù)的和為0,那么這兩個(gè)數(shù) 互為相反數(shù) 。
2、由前面的問題3,根據(jù)小學(xué)學(xué)過的乘法意義,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、學(xué)生活動(dòng):計(jì)算3×(-5)+3×5,注意運(yùn)用簡便運(yùn)算
通過計(jì)算表明3×(-5)與3×5互為相反數(shù),從而有
3×(-5)=-(3×5),由此看出,3×(-5)得負(fù)數(shù),并且把絕對值3與5相乘。
類似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正數(shù),并且把絕對值5與3相乘。
4、提出:從以上的運(yùn)算中,你能總結(jié)出有理數(shù)的乘法法則嗎?
鼓勵(lì)學(xué)生自己歸納,并用自己的語舞衫歌扇,并與同伴交流。
在學(xué)生猜測、歸納、交流的過程中及時(shí)引導(dǎo)、肯定
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對值相乘。
任何數(shù)與0相乘,積仍為0
(板書)有理數(shù)乘法法則:
三、應(yīng)用遷移,鞏固提高
1、計(jì)算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)學(xué)生根據(jù)乘法法則,在練習(xí)本上完成。指定四位同學(xué)到黑板演習(xí)。
(2)教師:要求學(xué)生明確算理,學(xué)生做練習(xí)時(shí),教師巡視,及時(shí)引導(dǎo)。
2、計(jì)算下列各題
① (-4)×5×(-0.25) ② ×( )×(-2)
③ ×( )×0×( )
指定三名同學(xué)在黑板上做,使學(xué)生明確,做有理數(shù)的乘法時(shí),要先確定積的符號(hào),再求出積的絕對值。
教師提出問題:幾個(gè)有理數(shù)相乘時(shí),因數(shù)都不為0時(shí),積是多少?
學(xué)生小結(jié)后,教師歸納:
幾個(gè)不為0的有理數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的符號(hào)決定,負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;只要有一個(gè)因數(shù)為0,則積為0
練習(xí):本P31練習(xí)
四、總結(jié)反思(學(xué)生先小結(jié))
1、有理數(shù)乘法法則
2、有理數(shù)乘法的一般步驟是:
(1)確定積的符號(hào); (2)把絕對值相乘。
五、作業(yè):P39習(xí)題1.5 A組 1、2
有理數(shù)的乘法教案(篇8)
1.使學(xué)生掌握多個(gè)有理數(shù)相乘的積的符號(hào)法則;
2.掌握有理數(shù)乘法的交換律和結(jié)合律,并利用運(yùn)算律簡化乘法運(yùn)算;
在師生互動(dòng)、生生互動(dòng)的系列活動(dòng)中,學(xué)會(huì)與老師及與其他同學(xué)交流、溝通和合作,準(zhǔn)確表達(dá)自己的思維過程。培養(yǎng)學(xué)生觀察、歸納、概括能力及運(yùn)算能力.
通過例題與練習(xí),體驗(yàn)“簡便運(yùn)算”帶來的愉悅,懂得運(yùn)算的每一步都必須有依據(jù)。通過新知的導(dǎo)入和運(yùn)用過程,感受到人們認(rèn)識(shí)事物的一般規(guī)律是“實(shí)踐、認(rèn)識(shí)、再實(shí)踐、再認(rèn)識(shí)”。培養(yǎng)學(xué)生的觀察和分析能力,滲透轉(zhuǎn)化的教學(xué)思想。
1.有理數(shù)乘法法則是什么?
2.計(jì)算(五分鐘訓(xùn)練):
(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);
(5)-2×3×(-4); (6) 97×0×(-6);
(7)1×2×3×4×(-5); (8)1×2×3×(-4)×(-5);
(9)1×2×(-3)×(-4)×(-5); (10)1×(-2)×(-3)×(-4)×(-5);
(11)(-1)×(-2)×(-3)×(-4)×(-5).
有理數(shù)的乘法教案(篇9)
教學(xué)目標(biāo)
1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號(hào)法則和絕對值運(yùn)算法則,并初步理解有理數(shù)乘法法則的合理性;
2.能根據(jù)有理數(shù)乘法法則熟練地進(jìn)行有理數(shù)乘法運(yùn)算,使學(xué)生掌握多個(gè)有理數(shù)相乘的積的符號(hào)法則;
3.三個(gè)或三個(gè)以上不等于0的有理數(shù)相乘時(shí),能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運(yùn)算過程;
4.通過有理數(shù)乘法法則及運(yùn)算律在乘法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;
5.本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識(shí)來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點(diǎn)、難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)是能夠熟練進(jìn)行有理數(shù)的乘法運(yùn)算。依據(jù)有理數(shù)的乘法法則和運(yùn)算律靈活進(jìn)行有理數(shù)乘法運(yùn)算是進(jìn)一步學(xué)習(xí)除法運(yùn)算和乘方運(yùn)算的基礎(chǔ)。有理數(shù)的乘法運(yùn)算和加法運(yùn)算一樣,都包括符號(hào)判定與絕對值運(yùn)算兩個(gè)步驟。因數(shù)不包含0的乘法運(yùn)算中積的符號(hào)取決于因數(shù)中所含負(fù)號(hào)的個(gè)數(shù)。當(dāng)負(fù)號(hào)的個(gè)數(shù)為奇數(shù)時(shí),積的符號(hào)為負(fù)號(hào);當(dāng)負(fù)號(hào)的個(gè)數(shù)為偶數(shù)時(shí),積的符號(hào)為正數(shù)。積的絕對值是各個(gè)因數(shù)的絕對值的積。運(yùn)用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運(yùn)算過程。
本節(jié)的難點(diǎn)是對有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號(hào)得正,異號(hào)得負(fù)”只是針對兩個(gè)因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號(hào)和積的絕對值的方法。即兩個(gè)因數(shù)符號(hào)相同,積的符號(hào)是正號(hào);兩個(gè)因數(shù)符號(hào)不同,積的符號(hào)是負(fù)號(hào)。積的絕對值是這兩個(gè)因數(shù)的絕對值的積。
(二)知識(shí)結(jié)構(gòu)
(三)教法建議
1.有理數(shù)乘法法則,實(shí)際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2.兩數(shù)相乘時(shí),確定符號(hào)的依據(jù)是“同號(hào)得正,異號(hào)得負(fù)”.絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法.
3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號(hào)法則與加法求和的符號(hào)法則的區(qū)別。
4.幾個(gè)數(shù)相乘,如果有一個(gè)因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個(gè)因數(shù)為0.
5.小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6.如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。

