關(guān)于教案課件,它是老師上課不可或缺的部分,日常寫(xiě)教案課件已成為很多老師的必要工作。教案的重要性在于它是指導(dǎo)教學(xué)的必要規(guī)范,那么如何寫(xiě)出一篇好的教案呢?以下是我們?yōu)槟鷾?zhǔn)備的關(guān)于“余弦定理教案”的相關(guān)信息,請(qǐng)閱讀下面的內(nèi)容!
余弦定理教案 篇1
《余弦定理》說(shuō)課稿
一.教材分析
1.地位及作用 “余弦定理”是人教A版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問(wèn)題的兩個(gè)重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問(wèn)題的其它數(shù)學(xué)問(wèn)題及生產(chǎn)、生活實(shí)際問(wèn)題的重要工具具有廣泛的應(yīng)用價(jià)值,起到承上啟下的作用。
2. 課時(shí)安排說(shuō)明
參照教學(xué)大綱與課程標(biāo)準(zhǔn),以及學(xué)生的現(xiàn)實(shí)情況,本節(jié)內(nèi)容安排兩課時(shí),本次說(shuō)課內(nèi)容為第一課時(shí)。3.教學(xué)重、難點(diǎn)
重點(diǎn):余弦定理的證明過(guò)程和定理的簡(jiǎn)單應(yīng)用。
難點(diǎn):利用向量的數(shù)量積證余弦定理的思路。二.學(xué)情分析
本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識(shí)和正弦定理有關(guān)內(nèi)容,對(duì)于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識(shí)。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣。總體上學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí)不強(qiáng),創(chuàng)造力較弱,看待與分析問(wèn)題不深入,知識(shí)的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度.三. 目標(biāo)分析
根據(jù)新課程標(biāo)準(zhǔn)突出學(xué)生綜合素質(zhì)培養(yǎng)的特點(diǎn),確定了本節(jié)課三位一體的教學(xué)目標(biāo):
知識(shí)目標(biāo):能推導(dǎo)余弦定理及其推論,能運(yùn)用余弦定理解已知“邊,角,邊”和“邊,邊,邊”兩類(lèi)三角形。
能力目標(biāo):培養(yǎng)學(xué)生知識(shí)的遷移能力;歸納總結(jié)的能力;運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。情感目標(biāo):從實(shí)際問(wèn)題出發(fā),體驗(yàn)數(shù)學(xué)在實(shí)際生活中的運(yùn)用,讓學(xué)生感受數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。通過(guò)主動(dòng)探索,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn)。養(yǎng)成實(shí)事求是的科學(xué)態(tài)度和契而不舍的鉆研精神.四. 教學(xué)方法
1.教法分析:
數(shù)學(xué)課堂上首先要重視知識(shí)的發(fā)生過(guò)程,既能展現(xiàn)知識(shí)的獲取,又能突出解決問(wèn)題的思維。在本節(jié)教學(xué)中,我將以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生探究、歸納、推導(dǎo),引導(dǎo)學(xué)生逐個(gè)突破難點(diǎn),使學(xué)生在各種數(shù)學(xué)活動(dòng)中掌握各種數(shù)學(xué)基本技能。
2.學(xué)法分析:
教師的“教”不僅要讓學(xué)生“學(xué)會(huì)知識(shí)”,更重要的是要讓學(xué)生“會(huì)學(xué)知識(shí)”,而正確的學(xué)法指導(dǎo)是培養(yǎng)學(xué)生這種能力的關(guān)鍵。本節(jié)教學(xué)中通過(guò)創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷“現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題”的過(guò)程,并通過(guò)實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識(shí)得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力.五. 教學(xué)過(guò)程
教學(xué)環(huán)節(jié):溫故知新—探究新知—鞏固提高—反思體驗(yàn)。
1.在第一環(huán)節(jié)中,我提出問(wèn)題:正弦定理及正弦定理解決的解三角形問(wèn)題。并引導(dǎo)學(xué)生思考正弦定理沒(méi)有解決的解三角形問(wèn)題。
設(shè)計(jì)意圖:溫故舊知,為學(xué)習(xí)新知識(shí),做準(zhǔn)備。
2.在第二個(gè)環(huán)節(jié)中:通過(guò)鐵路規(guī)劃的實(shí)際問(wèn)題,建立數(shù)學(xué)模型.設(shè)計(jì)意圖:通過(guò)實(shí)際問(wèn)題,引發(fā)學(xué)生思考,激發(fā)學(xué)生的學(xué)習(xí)興趣,在給出技術(shù)人員的方法后,提出問(wèn)題,激起學(xué)生求知欲.然后我將全班同學(xué)分為三個(gè)隊(duì),以小組合作的形式分別利用平面幾何法,向量法,解析法探究余弦定理.設(shè)計(jì)意圖: 從各個(gè)不同的方向探索得到余弦定理,發(fā)散學(xué)生的思維;讓全班同學(xué)參與其中,成為學(xué)習(xí)的主人,共同感受知識(shí)的產(chǎn)生過(guò)程,體驗(yàn)成功的快樂(lè).通過(guò)學(xué)生的自主學(xué)習(xí),合作交流,得出余弦定理公式,歸納總結(jié)定理特點(diǎn),樹(shù)立知三求一的思想.3.在第三個(gè)環(huán)節(jié)中,首先帶領(lǐng)學(xué)生解決之前的實(shí)際問(wèn)題,樹(shù)立學(xué)生信心,使學(xué)生有一種躍躍欲試的感覺(jué).然后設(shè)置了三道例題: 例1:已知兩邊及夾角,鞏固新知
例2:已知三邊求最大角;由學(xué)生思考得出余弦定理推論,帶動(dòng)學(xué)生思考,觀察推論,再次明確知三求一的思想;例3:已知兩邊及一邊對(duì)角;引導(dǎo)學(xué)生發(fā)出此類(lèi)問(wèn)題可以通過(guò)正,余弦定理兩種方法求解.這樣設(shè)計(jì)由淺入深,層次分明,符合學(xué)生的認(rèn)識(shí)規(guī)律,最后加以總結(jié).接下來(lái)通過(guò)一道口答題,使學(xué)生回憶起勾股定理可以解直角三角形,引發(fā)學(xué)生思考勾股定理與余弦定理的關(guān)系.設(shè)計(jì)意圖:加深學(xué)生對(duì)余弦定理的認(rèn)識(shí),強(qiáng)化特殊與一般的對(duì)立統(tǒng)一關(guān)系。通過(guò)知識(shí)的外延拓展學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)造力。
通過(guò)搶答環(huán)節(jié),調(diào)動(dòng)學(xué)生的積極性,通過(guò)課堂練習(xí)鞏固所學(xué)知識(shí),加強(qiáng)學(xué)生數(shù)學(xué)知識(shí)應(yīng)用能力的培養(yǎng).4.在最后一個(gè)環(huán)節(jié)中,通過(guò)知識(shí)樹(shù)的形式總結(jié)本節(jié)課內(nèi)容,使學(xué)生對(duì)知識(shí)有一個(gè)系統(tǒng)的回顧與認(rèn)識(shí),培養(yǎng)學(xué)生歸納概括能力。六.教學(xué)理念
學(xué)習(xí)的主體是學(xué)生,要因材施教對(duì)癥下藥,具體情況具體分析,不能照搬照抄。教無(wú)定法,關(guān)鍵是學(xué)生能不能有所思,有所得。新課程的數(shù)學(xué)提倡學(xué)生自主探索,合作交流,所以在本節(jié)課的教學(xué)中,我始終本著“教師是課堂教學(xué)的組織者、引導(dǎo)者、合作者”的原則,讓學(xué)生通過(guò)分析、觀察、歸納、推理等過(guò)程建構(gòu)新知識(shí),并初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物和思考問(wèn)題。同時(shí),以學(xué)生作為教學(xué)主體,設(shè)計(jì)可操作的數(shù)學(xué)活動(dòng),使每個(gè)同學(xué)都參與其中,從而帶動(dòng)和提高全體學(xué)生的學(xué)習(xí)積極性和主動(dòng)性。師生共同體驗(yàn)發(fā)現(xiàn)探索的快樂(lè),感受合作交流的愉悅。同時(shí)要求教師從知識(shí)的傳授者向課堂的設(shè)計(jì)者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱?、探究開(kāi)發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動(dòng)合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),深刻地體會(huì)數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識(shí)的潛能.昨天已經(jīng)成為歷史,今天我們?cè)谑銓?xiě)著歷史,愿我們的優(yōu)質(zhì)課競(jìng)賽成為豐富盟校教學(xué),提升成績(jī)的一個(gè)契機(jī),通鋼一中數(shù)學(xué)教師姚艷玲愿在這一活動(dòng)中為此貢獻(xiàn)自己的一份力量!謝謝大家!
余弦定理教案 篇2
各位評(píng)委各位同學(xué),大家好!我是數(shù)學(xué)()號(hào)選手,今天我說(shuō)課的題目是余弦定理,選自高中數(shù)學(xué)第一冊(cè)(下)中第五章平面向量第二部分解斜三角形的第二節(jié)。我以新課標(biāo)的理念為指導(dǎo),將教什么、怎樣教,為什么這樣教,分為教材與學(xué)情分析、教法與學(xué)法、教學(xué)過(guò)程、板書(shū)設(shè)計(jì)四個(gè)方面進(jìn)行說(shuō)明:
一、教材與學(xué)情分析
這節(jié)課與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系及判定三角形的全等有密切聯(lián)系,是高考的必考內(nèi)容之一,在日常生活和工業(yè)生產(chǎn)中也應(yīng)用很多。因此,余弦定理的知識(shí)非常重要。這堂課,我并不準(zhǔn)備將余弦定理全盤(pán)托出呈現(xiàn)給學(xué)生,而是采用創(chuàng)設(shè)情境式教學(xué),通過(guò)具體的情景激發(fā)學(xué)生探索新知識(shí)的欲望,引導(dǎo)學(xué)生一步步探究并發(fā)現(xiàn)余弦定理。
根據(jù)教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,我制定如下三個(gè)教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):掌握余弦定理兩種表示形式,解決兩類(lèi)基本的解三角形問(wèn)題。
(2)能力目標(biāo):通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)間的關(guān)系,來(lái)理解事物之間的普遍聯(lián)系。
(3)情感目標(biāo):面向全體學(xué)生,創(chuàng)造輕松愉快的教學(xué)氛圍,在教學(xué)中體會(huì)形數(shù)美的統(tǒng)一,充分調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
我將本節(jié)課的教學(xué)重點(diǎn)設(shè)為掌握余弦定理,教學(xué)難點(diǎn)設(shè)為初步應(yīng)用余弦定理解三角形問(wèn)題。
二、教法與學(xué)法
1、教法選擇:根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容及學(xué)生的認(rèn)知特點(diǎn),我選擇創(chuàng)設(shè)情境教學(xué)法、探究教學(xué)法和引導(dǎo)發(fā)現(xiàn)法相結(jié)合。以學(xué)生自主探究、合作交流為主,教師啟發(fā)引導(dǎo)為輔。
2、教學(xué)組織形式:師生互動(dòng)、生生互動(dòng)。
3、學(xué)法指導(dǎo):巴甫洛夫曾指出:“方法是最主要和最基本的東西”,因此學(xué)之有法,才能學(xué)之有效,學(xué)之有趣。根據(jù)本節(jié)課的特點(diǎn),我在學(xué)法上指導(dǎo)學(xué)生:
①如何探究問(wèn)題②遇到新的問(wèn)題時(shí)如何轉(zhuǎn)化為熟悉的問(wèn)題③做好評(píng)價(jià)與反思。
4、教學(xué)手段
根據(jù)數(shù)學(xué)課的特點(diǎn),我采用的教具是:多媒體和黑板相結(jié)合。利用多媒體進(jìn)行動(dòng)態(tài)和直觀的演示,輔助課堂教學(xué),為學(xué)生提供感性材料,幫助學(xué)生探索并發(fā)現(xiàn)余弦定理。對(duì)證明過(guò)程和知識(shí)體系板書(shū)演示,力爭(zhēng)與學(xué)生的思維同步。學(xué)具是:紙張、直尺、量角器。
三、教學(xué)過(guò)程
三、教學(xué)過(guò)程
為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教學(xué)中注意突出重點(diǎn)、突破難點(diǎn),我將從
創(chuàng)設(shè)情境、導(dǎo)入課題;
引導(dǎo)探究、獲得性質(zhì);
應(yīng)用遷移、交流反思;
拓展升華、發(fā)散思維;
小結(jié)歸納、布置作業(yè)
五個(gè)層次進(jìn)行教學(xué),具體過(guò)程如下:過(guò)程省略。
四、板書(shū)設(shè)計(jì):
板書(shū)是課堂教學(xué)必不可少的組成部分,為了再現(xiàn)本節(jié)課的知識(shí)體系,滲透結(jié)構(gòu)思想,突出本節(jié)課的重點(diǎn),我將這樣設(shè)計(jì)板書(shū)。性質(zhì)的證明和習(xí)題解答是學(xué)生完成的,讓學(xué)生寫(xiě)到黑板上,發(fā)現(xiàn)錯(cuò)誤可及時(shí)糾正;我將本節(jié)課的知識(shí)體系展示到黑板上,利于學(xué)生理清思路。
余弦定理教案 篇3
1.地位及作用
"余弦定理"是人教A版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問(wèn)題的兩個(gè)重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問(wèn)題的其它數(shù)學(xué)問(wèn)題及生產(chǎn)、生活實(shí)際問(wèn)題的重要工具具有廣泛的應(yīng)用價(jià)值,起到承上啟下的作用。
2.教學(xué)重、難點(diǎn)
重點(diǎn):余弦定理的證明過(guò)程和定理的簡(jiǎn)單應(yīng)用。
難點(diǎn):利用向量的數(shù)量積證余弦定理的思路。
知識(shí)目標(biāo):能推導(dǎo)余弦定理及其推論,能運(yùn)用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類(lèi)三角形。
能力目標(biāo):培養(yǎng)學(xué)生知識(shí)的遷移能力;歸納總結(jié)的能力;運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
情感目標(biāo):從實(shí)際問(wèn)題出發(fā)運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題這個(gè)過(guò)程體驗(yàn)數(shù)學(xué)在實(shí)際生活中的運(yùn)用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。通過(guò)主動(dòng)探索,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。
數(shù)學(xué)課堂上首先要重視知識(shí)的發(fā)生過(guò)程,既能展現(xiàn)知識(shí)的獲取,又能暴露解決問(wèn)題的思維。在本節(jié)教學(xué)中,我將遵循"提出問(wèn)題、分析問(wèn)題、解決問(wèn)題"的步驟逐步推進(jìn),以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生探究、歸納、推導(dǎo),引導(dǎo)學(xué)生逐個(gè)突破難點(diǎn),師生共同解決問(wèn)題,使學(xué)生在各種數(shù)學(xué)活動(dòng)中掌握各種數(shù)學(xué)基本技能,初步學(xué)會(huì)從數(shù)學(xué)角度去觀察事物和思考問(wèn)題,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的愿望和興趣。
本節(jié)教學(xué)中通過(guò)創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷"現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題"的過(guò)程,發(fā)現(xiàn)新的知識(shí),把學(xué)生的潛意識(shí)狀態(tài)的好奇心變?yōu)樽杂X(jué)求知的創(chuàng)新意識(shí)。又通過(guò)實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識(shí)得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力和增強(qiáng)了研究探索的綜合素質(zhì)。
幫助學(xué)生從平面幾何、三角函數(shù)、向量知識(shí)等方面進(jìn)行分析討論,選擇簡(jiǎn)潔的處理工具,引發(fā)學(xué)生的積極討論。你能夠有更好的具體的量化方法嗎?問(wèn)題可轉(zhuǎn)化為已知三角形兩邊長(zhǎng)和夾角求第三邊的問(wèn)題,即:在中已知AC=b,AB=c和A,求a.
學(xué)生對(duì)向量知識(shí)可能遺忘,注意復(fù)習(xí);在利用數(shù)量積時(shí),角度可能出現(xiàn)錯(cuò)誤,出現(xiàn)不同的表示形式,讓學(xué)生從錯(cuò)誤中發(fā)現(xiàn)問(wèn)題,鞏固向量知識(shí),明確向量工具的作用。同時(shí),讓學(xué)生明確數(shù)學(xué)中的轉(zhuǎn)化思想:化未知為已知。將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,引導(dǎo)學(xué)生分析問(wèn)題。在中已知a=5,b=7,c=8,求B.
學(xué)生思考或者討論,若有同學(xué)答則順勢(shì)引出推論,若不能作答則由老師引導(dǎo)推出推論,然后返回解決該問(wèn)題。
讓學(xué)生觀察推論的特征,討論該推論有什么用。
余弦定理教案 篇4
1.1《正弦定理與余弦定理》教案(新人教版必修5)(原創(chuàng))
余弦定理
一、教材依據(jù):人民教育出版社(A版)數(shù)學(xué)必修5第一章 第二節(jié)
二、設(shè)計(jì)思想:
1、教材分析:余弦定理是初中“勾股定理”內(nèi)容的直接延拓,是解三角形這一章知識(shí)的一個(gè)重要定理,揭示了任意三角形邊角之間的關(guān)系,是解三角形的重要工具,余弦定理與平面幾何知識(shí)、向量、三角形有著密切的聯(lián)系。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
2、學(xué)情分析:這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了正弦定理及有關(guān)知識(shí)的基礎(chǔ)上,轉(zhuǎn)入對(duì)余弦定理的學(xué)習(xí),此時(shí)學(xué)生已經(jīng)熟悉了探索新知識(shí)的數(shù)學(xué)教學(xué)過(guò)程,具備了一定的分析能力。
3、設(shè)計(jì)理念:由于余弦定理有較強(qiáng)的實(shí)踐性,所以在設(shè)計(jì)本節(jié)課時(shí),創(chuàng)設(shè)了一些數(shù)學(xué)情景,讓學(xué)生從已有的幾何知識(shí)出發(fā),自己去分析、探索和證明。激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣,提高學(xué)生的創(chuàng)新思維能力。
4、教學(xué)指導(dǎo)思想:根據(jù)當(dāng)前學(xué)生的學(xué)習(xí)實(shí)際和本節(jié)課的內(nèi)容特點(diǎn),我采用的是“問(wèn)題教學(xué)法”,精心設(shè)計(jì)教學(xué)內(nèi)容,提出探究性問(wèn)
找到解決問(wèn)題的方法。
三、教學(xué)目標(biāo):
1、知識(shí)與技能:
理解并掌握余弦定理的內(nèi)容,會(huì)用向量法證明余弦定理,能用余弦定理解決一些簡(jiǎn)單的三角度量問(wèn)題
2.過(guò)程與方法:
通過(guò)實(shí)例,體會(huì)余弦定理的內(nèi)容,經(jīng)歷并體驗(yàn)使用余弦定理求解三角形的過(guò)程與方法,發(fā)展用數(shù)學(xué)工具解答現(xiàn)實(shí)生活問(wèn)題的能力。
3.情感、態(tài)度與價(jià)值觀:
探索利用直觀圖形理解抽象概念,體會(huì)“數(shù)形結(jié)合”的思想。通過(guò)余弦定理的應(yīng)用,感受余弦定理在解決現(xiàn)實(shí)生活問(wèn)題中的意義。
四、教學(xué)重點(diǎn):
通過(guò)對(duì)三角形邊角關(guān)系的探索,證明余弦定理及其推論,并能應(yīng)用它們解三角形及求解有關(guān)問(wèn)題。
五、教學(xué)難點(diǎn):余弦定理的靈活應(yīng)用
六、教學(xué)流程:
(一)創(chuàng)設(shè)情境,課題導(dǎo)入:
1、復(fù)習(xí):已知A=300,C=450,b=16解三角形。(可以讓學(xué)生板練)
2、若將條件C=450改成c=8如何解三角形?
設(shè)計(jì)意圖:把研究余弦定理的問(wèn)題和平面幾何中三角形全等判定的方法建立聯(lián)系,溝通新舊知識(shí)的聯(lián)系,引導(dǎo)學(xué)生體會(huì)量化
師生活動(dòng):用數(shù)學(xué)符號(hào)來(lái)表達(dá)“已知三角形的兩邊及其夾角解三角形”:已知△ABC,BC=a,AC=b,和角C,求解c,B,A 引出課題:余弦定理
(二)設(shè)置問(wèn)題,知識(shí)探究
1、探究:我們可以先研究計(jì)算第三邊長(zhǎng)度的問(wèn)題,那么我們又從那些角度研究這個(gè)問(wèn)題能得到一個(gè)關(guān)系式或計(jì)算公式呢? 設(shè)計(jì)意圖:期望能引導(dǎo)學(xué)生從各個(gè)不同的方面去研究、探索得到余弦定理。
師生活動(dòng):從某一個(gè)角度探索并得出余弦定理
2、①考慮用向量的數(shù)量積:如圖 A
C
??????設(shè)CB?a,CA?b,AB?c,那么,c?a?b?2???????2?2?c?c?c?(a?b)(a?b)?a?b?2abcosCB 即cab222?a?b?2abcosC,引導(dǎo)學(xué)生證明22222
?b?c?2bccosA?c?a?2cacosB2②還 引導(dǎo)學(xué)生運(yùn)用此法來(lái)進(jìn)行證明
3、余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的(可以讓學(xué)生自己總結(jié),教師補(bǔ)充完整)
(三)典型例題剖析:
1、例1:在△ABC中,已知b=2cm,c=2cm,A=1200,解三角形。
教師分析、點(diǎn)撥并板書(shū)證明過(guò)程
總結(jié):已知三角形的兩邊和它們的夾角解三角形,基本思路是先由余弦定理求出第三邊,再由正弦定理求其余各角。變式引申:在△ABC中,已知b=5,c=
53,A=300,解三角形。
2、探究:余弦定理是關(guān)于三角形三邊和一個(gè)角的一個(gè)關(guān)系式,把這個(gè)關(guān)系式作某些變形,是否可以解決其他類(lèi)型的解三角形問(wèn)題?
設(shè)計(jì)意圖:(1)引入余弦定理的推論(2)對(duì)一個(gè)數(shù)學(xué)式子作某種變形,從而得到解決其他類(lèi)型的數(shù)學(xué)問(wèn)題,這是一種基本的研究問(wèn)題的方法。
師生活動(dòng):對(duì)余弦定理作某些變形,研究變形后所得關(guān)系式的應(yīng)用。因此應(yīng)把重點(diǎn)引導(dǎo)到余弦定理的推論上去,即討論已知三邊求角的問(wèn)題。
引入余弦定理的推論:cosA=cosB=a?c?b2ac222b?c?a2bc2222 , , cosC=
a?b?c2ab22
公式作用:(1)、已知三角形三邊,求三角。
(2)、若A為直角,則cosA=0,從而b2+c2=a2
若A為銳角,則 cosA>0, 從而b2+c2>a2
若A為鈍角,則 cosA﹤0, 從而b2+c2﹤a2
6?2,求A、B、C例2:已知在?ABC中,a?23,b?22,c?
先讓學(xué)生自己分析、思索,老師進(jìn)行引導(dǎo)、啟發(fā)和補(bǔ)充,最后師生一起求解。
總結(jié):對(duì)于已知三角形的三邊求三角這種類(lèi)型,解三角形的基本思路是先由余弦定理求出兩角,再用三角形內(nèi)角和定理求出第三角。(可以先讓學(xué)生歸納總結(jié),老師補(bǔ)充)變式引申:在△ABC中,a:b:c=2:讓學(xué)生板練,師生共同評(píng)判
3、三角形形狀的判定:
例3:在△ABC中,acosA=bcosB,試確定此三角形的形狀。
(教師引導(dǎo)學(xué)生分析、思考,運(yùn)用多種方法求解)
求解思路:判斷三角形的形狀可有兩種思路,一是利用邊之間的關(guān)系來(lái)判定,在運(yùn)算過(guò)程中,盡可能地把角的關(guān)系化為邊的關(guān)系;二是利用角之間的關(guān)系來(lái)判定,將邊化成角。
變式引申:在△ABC中,若(a+b+c)(b+c-a)=3bc,并且sinA=2sinBcosC,判斷△ABC的形狀。
讓學(xué)生板練,發(fā)現(xiàn)問(wèn)題進(jìn)行糾正。
(四)課堂檢測(cè)反饋:
1、已知在△ABC中,b=8,c=3,A=600,則a=()A 2 B 4 C 7 D 9
6:(3+1),求A、B、C。、在△ABC中,若a=
3+1,b=
3-1,c=
10,則△ABC的最大角的度數(shù)為()A 1200 B 900 C 600 D 1500
3、在△ABC中,a:b:c=1:
3:2,則A:B:C=()
A 1:2:3 B 2:3:1 C 1:3:2 D 3:1:2
4、在不等邊△ABC中,a是最大的邊,若a25、在△ABC中,AB=5,BC=6,AC=8,則△ABC的形狀是()A銳角三角形 B直角三角形 C鈍角三角形 D非鈍角三角形(五)課時(shí)小結(jié):(學(xué)生自己歸納、補(bǔ)充,培養(yǎng)學(xué)生的口頭表達(dá)能力和歸納概括能力,教師總結(jié))運(yùn)用多種方法推導(dǎo)出余弦定理,并靈活運(yùn)用余弦定理解決解三角形的兩種類(lèi)型及判斷三角形的形狀問(wèn)題。(六)課后作業(yè):課本第10頁(yè)A組3(2)、4(2);B組第2題(七)教學(xué)反思:本堂課的設(shè)計(jì),立足于所創(chuàng)設(shè)的情境,注重提出問(wèn)題,引導(dǎo)學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問(wèn)題、解決問(wèn)題的過(guò)程,學(xué)生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受到了創(chuàng)造的苦和樂(lè),知識(shí)目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實(shí)。
余弦定理教案 篇5
教材分析:(說(shuō)教材)。
是全日制普通高級(jí)中學(xué)教科書(shū)(必修)數(shù)學(xué)第一冊(cè)(下)中第五章平面向量第二部分解斜三角形的一個(gè)重要定理。這堂課,我并不是將余弦定理全盤(pán)呈現(xiàn)給學(xué)生,而是從實(shí)際問(wèn)題的求解困難,造成學(xué)生認(rèn)知上的沖突,從而激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。
另外,本節(jié)與教材其他課文共性是,都要掌握定理內(nèi)容及證明方法,會(huì)解決相關(guān)的問(wèn)題。
下面說(shuō)一說(shuō)我的教學(xué)思路。
教學(xué)目的:通過(guò)對(duì)教材的分析鉆研制定了教學(xué)目的:
1.掌握余弦定理的內(nèi)容及證明余弦定理的向量方法,會(huì)運(yùn)用余弦定理解決兩類(lèi)基本的解三角形問(wèn)題。2.培養(yǎng)學(xué)生在方程思想指導(dǎo)下解三角形問(wèn)題的運(yùn)算能力。3.培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的思維能力。
4.通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
教學(xué)重點(diǎn):余弦定理揭示了任意三角形邊角之間的客觀規(guī)律,是解三角形的重要工具。余弦定理是初中學(xué)習(xí)的勾股定理同角的拓廣,也是前階段學(xué)習(xí)的三角函數(shù)知識(shí)與平面向量知識(shí)在三角形中的交匯應(yīng)用。本節(jié)課的重點(diǎn)內(nèi)容是余弦定理的發(fā)現(xiàn)和證明過(guò)程及基本應(yīng)用,其中發(fā)現(xiàn)余弦定理的過(guò)程是檢驗(yàn)和訓(xùn)練學(xué)生思維品質(zhì)的重要素材。教學(xué)難點(diǎn):
余弦定理是勾股定理的推廣形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的發(fā)現(xiàn)和證明過(guò)程中,起到奠基作用,因此分析勾股定理的結(jié)構(gòu)特征是突破發(fā)現(xiàn)余弦定理這個(gè)難點(diǎn)的關(guān)鍵。教學(xué)方法:
在確定教學(xué)方法之前,首先分析一下學(xué)生:我所教的是課改一年級(jí)的學(xué)生。他們的基礎(chǔ)比正常高中的學(xué)生要差許多,拿其中一班學(xué)生來(lái)說(shuō):數(shù)學(xué)入學(xué)成績(jī)及格的占50%左右,相對(duì)來(lái)說(shuō)教材難度較大,要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。
根據(jù)教材和學(xué)生實(shí)際,本節(jié)主要采用“啟發(fā)式教學(xué)”、“講授法”、“演示法”,并采用電教手段使用多媒體輔助教學(xué)。
1.啟發(fā)式教學(xué):
利用一個(gè)工程問(wèn)題創(chuàng)設(shè)情景,啟發(fā)學(xué)生對(duì)問(wèn)題進(jìn)行思考。在研究過(guò)程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。2.練習(xí)法:通過(guò)練習(xí)題的訓(xùn)練,讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)識(shí),反復(fù)的練習(xí),體現(xiàn)學(xué)生的主體作用。3.講授法:充分發(fā)揮主導(dǎo)作用,引導(dǎo)學(xué)生學(xué)習(xí)。
這節(jié)課準(zhǔn)備的器材有:計(jì)算機(jī)、大屏幕。教學(xué)程序:
1.復(fù)習(xí)正弦定理(2分鐘):安排一名同學(xué)上黑板寫(xiě)正弦定理。
2.設(shè)計(jì)精彩的新課導(dǎo)入(5分鐘):利用大屏幕演示一座山,先展示,后出現(xiàn)B、C,再連成虛線(xiàn),并閃動(dòng)幾下,閃動(dòng)邊AB、AC幾下,再閃動(dòng)角A的陰影幾下,可測(cè)得AC、AB的長(zhǎng)及∠A大小.問(wèn)你知道工程技術(shù)人員是怎樣計(jì)算出來(lái)的嗎?
一下子,學(xué)生的注意力全被調(diào)動(dòng)起來(lái),學(xué)生一定會(huì)采用正弦定理,但很快發(fā)現(xiàn)∠B、∠C不能確定,陷入困境當(dāng)中。
3.探索研究,合理猜想。
當(dāng)AB=c,AC=b一定,∠A變化時(shí),a可以認(rèn)為是A的函數(shù),a=f(A),A∈(0,∏)
比較三種情況,學(xué)生會(huì)很快找到其中規(guī)律.-2ab的系數(shù)-1、0、1與A=0、∏/
2、∏之間存在對(duì)應(yīng)關(guān)系.教師指導(dǎo)學(xué)生由特殊到一般,經(jīng)比較分析特例,概括出余弦定理,這種促使學(xué)生主動(dòng)參與知識(shí)形成過(guò)程的教學(xué)方法,既符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律,又突出了學(xué)生的主體地位?!笆谌艘贼~(yú)”,不如“授人以漁”,引導(dǎo)學(xué)生發(fā)現(xiàn)問(wèn)題,探究知識(shí),建構(gòu)知識(shí),對(duì)學(xué)生來(lái)說(shuō),既是對(duì)數(shù)學(xué)研究活動(dòng)的一種體驗(yàn),又是掌握一種終身受用的治學(xué)方法。4.證明猜想,建構(gòu)新知
接下來(lái)就是水到渠成,現(xiàn)在余弦定理還需要進(jìn)一步證明,要符合數(shù)學(xué)的嚴(yán)密邏輯推理,鍛煉學(xué)生自己寫(xiě)出定理證明的已知條件和結(jié)論,請(qǐng)一位學(xué)生到黑板寫(xiě)出來(lái),并請(qǐng)同學(xué)們自己進(jìn)行證明。教師在課中進(jìn)行指導(dǎo),針對(duì)出現(xiàn)的問(wèn)題,結(jié)合大屏幕打出的正確過(guò)程進(jìn)行講解。
在大屏幕打出余弦定理,為了促進(jìn)學(xué)生記憶,在黑板上讓學(xué)生背著寫(xiě)出定理,也是當(dāng)堂鞏固定理的方法。5.操作演練,鞏固提高。
定理的應(yīng)用是本節(jié)的重點(diǎn)之一。我分析題目,請(qǐng)同學(xué)們進(jìn)行解答,在難點(diǎn)處進(jìn)行點(diǎn)撥。以第二題為例,在求A的過(guò)程中學(xué)生會(huì)產(chǎn)生分歧,一部分采用正弦定理,一部分采用余弦定理,其實(shí)兩種做法都可得到正確答案,形成解法一和解法二。在這道例題中進(jìn)行發(fā)散思維的訓(xùn)練,(在上例中,能否既不使用余弦定理,也不使用正弦定理,求出∠A?)
啟發(fā)一:a視為B與C兩點(diǎn)間的距離,利用B、C的坐標(biāo)構(gòu)造含A的等式
啟發(fā)二:利用平移,用兩種方法求出C’點(diǎn)的坐標(biāo),構(gòu)造等式。使學(xué)生的思維活躍,漸入新的境界。每次啟發(fā),或是針對(duì)一般原則的提示,或是在學(xué)生出現(xiàn)思維盲點(diǎn)處點(diǎn)撥,或是學(xué)生“簡(jiǎn)單一跳未摘到果子”時(shí)的及時(shí)提醒。
6.課堂小結(jié):
告訴學(xué)生余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理的特例。
7.布置作業(yè):書(shū)面作業(yè) 3道題
作業(yè)中注重余弦定理的應(yīng)用,重點(diǎn)培養(yǎng)解決問(wèn)題的能力。