向善的根本在于教育,教育的根本在于老師,寫教案課件是每個老師每天都在從事的事情。優(yōu)秀的教案的創(chuàng)新點突出,只有創(chuàng)新才不會使自己的教案落入俗套,以下內(nèi)容主題是“高中高一數(shù)學(xué)說課稿”,是出國留學(xué)網(wǎng)小編為您分享的,強(qiáng)烈建議你能收藏本頁以方便閱讀!
高中高一數(shù)學(xué)說課稿【篇1】
各位領(lǐng)導(dǎo)和老師,大家好!我說課的內(nèi)容是蘇教版必修1第1章第3節(jié)第一課時《交集、并集》,下面我想談?wù)勎覍@節(jié)課的教學(xué)構(gòu)想:
一、教材分析:
與傳統(tǒng)的教材處理不同,本章在學(xué)生通過觀察具體集合得到集合的補(bǔ)集的概念后,上升到數(shù)學(xué)內(nèi)部,將"補(bǔ)"理解為集合間的一種"運算".在此基礎(chǔ)上,通過實例,使學(xué)生感受和掌握集合之間的另外兩種運算—交和并。設(shè)計的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數(shù)學(xué)語言,在后續(xù)的學(xué)習(xí)中是一種重要的工具。因此,在教學(xué)過程中要針對具體問題,引導(dǎo)學(xué)生恰當(dāng)使用自然語言、圖形語言和集合語言來描述相應(yīng)的數(shù)學(xué)內(nèi)容。有了集合的語言,可以更清晰的表達(dá)我們的思想。所以,集合是整個數(shù)學(xué)的基礎(chǔ),在以后的學(xué)習(xí)中有著極為廣泛的應(yīng)用。
基于以上的分析制定以下的教學(xué)目標(biāo)
二、教學(xué)目標(biāo):
1、理解交集與并集的概念;掌握有關(guān)集合的術(shù)語和符號,并會用它們正確表示一些簡單的集合。能用Venn圖表示集合之間的關(guān)系;掌握兩個集合的交集、并集的求法。
2、通過對交集、并集概念的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、概括的能力,使學(xué)生認(rèn)識由具體到抽象的思維過程。
3、通過對集合符號語言的學(xué)習(xí),培養(yǎng)學(xué)生符號表達(dá)能力,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)作風(fēng),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
三、教學(xué)重點、難點:
針對以上的分析我把教學(xué)重點放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導(dǎo)學(xué)生通過觀察、比較、分析、概括出交集與并集的概念作為本節(jié)的教學(xué)難點。
四、教法、學(xué)法:
針對我們師范學(xué)校學(xué)生的特點,我本著低起點、高要求、循序漸進(jìn),充分調(diào)動學(xué)生學(xué)習(xí)積極性的原則,采用"五環(huán)節(jié)教學(xué)法".同時利用多媒體輔助教學(xué)。
下面我重點說一說教學(xué)過程
五、教學(xué)過程:
第一個環(huán)節(jié):問題情境
通過實例:學(xué)校舉辦了排球賽,08小教(2)56名同學(xué)中有12名同學(xué)參賽,后來又舉辦了田徑賽,這個班有20名同學(xué)參賽。已知兩項都參賽的有6名同學(xué)。兩項比賽中,這個班共有多少名同學(xué)沒有參加過比賽?讓學(xué)生感受到數(shù)學(xué)與我們的生活息息相關(guān),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
學(xué)生思考后回答,然后老師加以引導(dǎo),讓學(xué)生的回答達(dá)到這樣三個層次:
層次一:發(fā)現(xiàn)要求沒有參加比賽的人數(shù),首先應(yīng)該算出參加比賽的人數(shù),并且知道參加比賽的人數(shù)是12+20-6,而不是12+20,因為有6人既參加排球賽又參加田徑賽。
層次二:老師引導(dǎo)學(xué)生利用集合的觀點再來研究這個問題。先設(shè)
利用Venn圖來表示集合A,B,C.發(fā)現(xiàn)集合A,B的公共部分就是集合C.
層次三:引導(dǎo)學(xué)生發(fā)現(xiàn)集合C的元素的構(gòu)成與集合A,B的元素的關(guān)系。學(xué)生可以發(fā)現(xiàn)集合C中的元素是由既參加排球比賽又參加田徑比賽的同學(xué)構(gòu)成的,更進(jìn)一步集合C的元素是由既屬于集合A的元素又屬于集合B的元素構(gòu)成的。
通過對三個層次的探究和分析讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
第二環(huán)節(jié):最后抽象、歸納出交集的文字?jǐn)⑹龅亩x。
定義給出后,讓學(xué)生利用數(shù)學(xué)符號語言寫出的集合表示。充分體現(xiàn)使用集合語言,可以簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)的一些內(nèi)容。
第三環(huán)節(jié):通過兩個例子鞏固定義。
例1是較為簡單的不用動筆,同學(xué)直接口答即可;例2是必須動筆計算的,并且還要通過數(shù)軸輔助解決,充分體現(xiàn)了數(shù)形結(jié)合的思想。通過這兩個例子的解決,使學(xué)生不僅掌握數(shù)學(xué)基礎(chǔ)知識和基本技能,同時也體現(xiàn)出了數(shù)學(xué)的思想方法,發(fā)展學(xué)生的應(yīng)用意識和創(chuàng)新意識。
第四環(huán)節(jié):最后對交集進(jìn)行再認(rèn)識,并利用Venn圖歸納、總結(jié)出交集的性質(zhì)。
在這一環(huán)節(jié)中老師只是引導(dǎo)著,學(xué)生是主體,充分發(fā)揮學(xué)生的積極主動性,使學(xué)生在學(xué)習(xí)的過程中成為在教師引導(dǎo)下的"再創(chuàng)造"過程。應(yīng)當(dāng)準(zhǔn)備預(yù)案。
第五環(huán)節(jié):通過綜合性較強(qiáng)的例子進(jìn)一步鞏固定義和性質(zhì)。
這樣的五個環(huán)節(jié)不僅充分考慮到學(xué)生的認(rèn)知規(guī)律,而且為學(xué)生和教師的積極活動提供了空間和可能。更印證了低起點、高要求、循序漸進(jìn),充分調(diào)動學(xué)生學(xué)習(xí)積極性的原則。
交集的定義、性質(zhì)研究清楚之后,并集的定義、性質(zhì)就順理成章了,仿照交集的研究方法去研究。這樣不僅讓學(xué)生學(xué)到了知識,而且學(xué)會了探究問題的方法。
交集、并集的定義、性質(zhì)研究完了以后,設(shè)計"感受理解、思考運用、拓展探究"三個不同層次的練習(xí)題進(jìn)行檢測本節(jié)課的學(xué)習(xí)效果,同時要考慮到不同水平,不同興趣學(xué)生的學(xué)習(xí)需要。
小結(jié)應(yīng)先由學(xué)生總結(jié),然后老師強(qiáng)調(diào)兩點:一是交集與并集的區(qū)別與聯(lián)系;二是對本節(jié)課進(jìn)行科學(xué)的評價,既要關(guān)注學(xué)生學(xué)習(xí)數(shù)學(xué)的結(jié)果,又要關(guān)注它們在數(shù)學(xué)活動中所表現(xiàn)出的情感態(tài)度的變化,關(guān)注學(xué)生個性與潛能的發(fā)展,關(guān)注學(xué)生數(shù)學(xué)地提出、分析、解決問題的過程的評價,以及在過程中華表現(xiàn)出來的與人合作的態(tài)度,表達(dá)與交流的意識和探索精神。
作業(yè)、板書設(shè)計
以上就是我說課的內(nèi)容,謝謝大家!
高中高一數(shù)學(xué)說課稿【篇2】
職業(yè)高中高一數(shù)學(xué)教案篇1
一、教學(xué)內(nèi)容分析
向量作為工具在數(shù)學(xué)、物理以及實際生活中都有著廣泛的應(yīng)用.
本小節(jié)的重點是結(jié)合向量知識證明數(shù)學(xué)中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.
二、教學(xué)目標(biāo)設(shè)計
1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會從不同角度去看待一些數(shù)學(xué)問題,使一些數(shù)學(xué)知識有機(jī)聯(lián)系,拓寬解決問題的思路.
2、了解構(gòu)造法在解題中的運用.
三、教學(xué)重點及難點
重點:平面向量知識在各個領(lǐng)域中應(yīng)用.
難點:向量的構(gòu)造.
四、教學(xué)流程設(shè)計
五、教學(xué)過程設(shè)計
一、復(fù)習(xí)與回顧
1、提問:下列哪些量是向量?
(1)力 (2)功 (3)位移 (4)力矩
2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說明]復(fù)習(xí)數(shù)量積的有關(guān)知識.
二、學(xué)習(xí)新課
例1(書中例5)
向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時它在數(shù)學(xué)學(xué)科中也有許多妙用!請看
例2(書中例3)
證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.
證法(二)向量法
[說明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點,構(gòu)造向量,并發(fā)現(xiàn)(等號成立的充要條件是)
例3(書中例4)
[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個公式得到證明.
二、鞏固練習(xí)
1、如圖,某人在靜水中游泳,速度為 km/h.
(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進(jìn)?速度大小為多少?
答案:沿北偏東方向前進(jìn),實際速度大小是8 km/h.
(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進(jìn)?實際前進(jìn)的速度大小為多少?
答案:朝北偏西方向前進(jìn),實際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.
2、要學(xué)會從不同的角度去看一個數(shù)學(xué)問題,是數(shù)學(xué)知識有機(jī)聯(lián)系.
四、作業(yè)布置
1、書面作業(yè):課本P73, 練習(xí)8.4 4
職業(yè)高中高一數(shù)學(xué)教案篇2
教學(xué)目標(biāo):
1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.
2.會求一些簡單函數(shù)的反函數(shù).
3.在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識.
4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.
教學(xué)重點:求反函數(shù)的方法.
教學(xué)難點:反函數(shù)的概念.
教學(xué)過程:
教學(xué)活動
設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課
1.復(fù)習(xí)提問
①函數(shù)的概念
②y=f(x)中各變量的意義
2.同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.
3.板書課題
由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.
二、實例分析,組織探究
1.問題組一:
(用投影給出函數(shù)與;與()的圖象)
(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱.是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)
(2)由,已知y能否求x?
(3)是否是一個函數(shù)?它與有何關(guān)系?
(4)與有何聯(lián)系?
2.問題組二:
(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?
3.滲透反函數(shù)的概念.
(教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)
從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力.
通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).
三、師生互動,歸納定義
1.(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C.我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成.
2.引導(dǎo)分析:
1)反函數(shù)也是函數(shù);
2)對應(yīng)法則為互逆運算;
3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號f;
7)交換變量x、y的原因.
3.兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系
(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的.)
4.函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值 域
C
A
四、應(yīng)用解題,總結(jié)步驟
1.(投影例題)
【例1】求下列函數(shù)的反函數(shù)
(1)y=3x-1 (2)y=x 1
【例2】求函數(shù)的反函數(shù).
(教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟.)
2.總結(jié)求函數(shù)反函數(shù)的步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫出反函數(shù)的定義域.
(簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?
(2)的反函數(shù)是________.
(3)(x
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進(jìn)而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù).在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握.
通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解.
通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.
題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.
五、鞏固強(qiáng)化,評價反饋
1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.
(讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)
進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度.具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性."問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂.
六、作業(yè)
習(xí)題2.4第1題,第2題
進(jìn)一步鞏固所學(xué)的知識.
教學(xué)設(shè)計說明
"問題是數(shù)學(xué)的心臟".一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進(jìn)而又通過若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.
反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用.通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。
職業(yè)高中高一數(shù)學(xué)教案篇3
一、教學(xué)內(nèi)容分析
本節(jié)內(nèi)容是學(xué)生在學(xué)習(xí)了乘法原理、排列、排列數(shù)公式和加法原理以后的知識,學(xué)生已經(jīng)掌握了排列問題,并且對順序與排列的關(guān)系已經(jīng)有了一個比較清晰的認(rèn)識.因此關(guān)鍵是排列與組合的區(qū)別在于問題是否與順序有關(guān).與順序有關(guān)的是排列問題,與順序無關(guān)是組合問題,順序?qū)ε帕?、組合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡單的,但在具體求解過程中學(xué)生往往感到困惑,分不清到底與順序有無關(guān)系,指導(dǎo)學(xué)生根據(jù)生活經(jīng)驗和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學(xué)的真諦在于悟,只有學(xué)生真正理解了,才能舉一反三、融會貫通.
二、教學(xué)目標(biāo)設(shè)計
1.理解組合的意義,掌握組合數(shù)的計算公式;
2.能正確認(rèn)識組合與排列的聯(lián)系與區(qū)別
3.通過練習(xí)與訓(xùn)練體驗并初步掌握組合數(shù)的計算公式
三、教學(xué)重點及難點
組合概念的理解和組合數(shù)公式;組合與排列的區(qū)別.
四、教學(xué)用具準(zhǔn)備
多媒體設(shè)備
五、教學(xué)流程設(shè)計
高中高一數(shù)學(xué)說課稿【篇3】
一、教材分析
1、教材的地位和作用:
函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù)及指數(shù)函數(shù)的圖像和性質(zhì),同時也為今后研究對數(shù)函數(shù)及其性質(zhì)打下堅實的基礎(chǔ)。因此本節(jié)課內(nèi)容十分重要,它對知識起著承上啟下的作用。
2、教學(xué)的重點和難點:
根據(jù)這節(jié)課的內(nèi)容特點及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及應(yīng)用,難點定為指數(shù)函數(shù)性質(zhì)的發(fā)現(xiàn)過程及指數(shù)函數(shù)與底的關(guān)系。
二、教學(xué)目標(biāo)分析
基于對教材的理解和分析,我制定了以下教學(xué)目標(biāo):
1、理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)圖像、性質(zhì)及其簡單應(yīng)用。
2、通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合思想和分類討論思想,增強(qiáng)學(xué)生識圖用圖的能力。
3、培養(yǎng)學(xué)生對知識的嚴(yán)謹(jǐn)科學(xué)態(tài)度和辯證唯物主義觀點。
三、教法學(xué)法分析
1、學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也逐步形成,但由于年齡的原因,思維盡管活躍敏捷,卻缺乏冷靜深刻。因此思考問題片面不嚴(yán)謹(jǐn)。
2、教法分析:基于以上學(xué)情分析,我采用先學(xué)生討論,再教師講授教學(xué)方法。一方面培養(yǎng)學(xué)生的觀察、分析、歸納等思維能力。另一方面用教師的講授來糾正由于學(xué)生思維過分活躍而走入的誤區(qū),和彌補(bǔ)知識的不足,達(dá)到能力與知識的雙重效果。
3、學(xué)法分析
讓學(xué)生仔細(xì)觀察書中給出的實際例子,使他們發(fā)現(xiàn)指數(shù)函數(shù)與現(xiàn)實生活息息相關(guān)。再根據(jù)高一學(xué)生愛動腦懶動手的特點,讓學(xué)生自己描點畫圖,畫出指數(shù)函數(shù)的圖像,繼而用自己的語言總結(jié)指數(shù)函數(shù)的性質(zhì),學(xué)生經(jīng)歷了探究的過程,培養(yǎng)探究能力和抽象概括的能力。
高中高一數(shù)學(xué)說課稿【篇4】
一、教材分析
1.教學(xué)內(nèi)容
本節(jié)課內(nèi)容教材共分兩課時進(jìn)行,這是第一課時,該課時主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。
2.教材的地位和作用
函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。
3.教材的重點﹑難點﹑關(guān)鍵
教學(xué)重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念.
教學(xué)難點:領(lǐng)會函數(shù)單調(diào)性的實質(zhì)與應(yīng)用,明確單調(diào)性是一個局部的概念。
教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)出發(fā),講清楚概念的形成過程.
4.學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng).
二、目標(biāo)分析
(一)知識目標(biāo):
1.知識目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。
2.能力目標(biāo):通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識聯(lián)系,增強(qiáng)學(xué)生對知識的主動構(gòu)建的能力。
3.情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知_。領(lǐng)會用運動變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進(jìn)行辨證唯物主義的思想教育。
(二)過程與方法
培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。
三、教法與學(xué)法
1.教學(xué)方法
在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過程。
2.學(xué)習(xí)方法
自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。
四、過程分析
本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個板塊。這里分別就其過程和設(shè)計意圖作一一分析。
(一)問題情景:
為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知_,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件)
新課程理念認(rèn)為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強(qiáng)化學(xué)生的感性認(rèn)識,從而達(dá)到學(xué)生對數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。
(二)函數(shù)單調(diào)性的定義引入
1.幾何畫板動畫演示,請學(xué)生認(rèn)真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認(rèn)識。,進(jìn)行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:
從在某一區(qū)間內(nèi)當(dāng)x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號語言。幾何畫板的靈活使用,數(shù)形有機(jī)結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號語言的翻譯變得輕松。
設(shè)計意圖:通過學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強(qiáng)學(xué)生自主學(xué)習(xí)、獨立思考,由學(xué)會向會學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。通過學(xué)生已學(xué)過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認(rèn)識。從學(xué)生的原有認(rèn)知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認(rèn)識入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。
(三)增函數(shù)、減函數(shù)的定義
在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時要求學(xué)生討論概念中的關(guān)鍵詞和注意點。
定義中的“當(dāng)x1x2時,都有f(x1)
注意:(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;
(2)注意區(qū)間上所取兩點x1,x2的任意性;
(3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。
讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。
設(shè)計意圖:通過給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處理,同時也是讓學(xué)生感悟、體驗學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個性品質(zhì)。
(四)例題分析
在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。
2.例2.證明函數(shù)在區(qū)間(-∞,+∞)上是減函數(shù)。
在本題的解決過程中,要求學(xué)生對照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。
變式一:函數(shù)f(x)=-3x+b在R上是減函數(shù)嗎?為什么?
變式二:函數(shù)f(x)=kx+b(k
變式三:函數(shù)f(x)=kx+b(k
錯誤:實質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論
例題設(shè)計意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強(qiáng)化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識,進(jìn)一步加深對概念的理解,同時也是依托具體問題,對單調(diào)區(qū)間這一概念的再認(rèn)識;要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進(jìn)行觀察是一種常用而又粗略的方法。嚴(yán)格地說,它需要根據(jù)單調(diào)函數(shù)的定義進(jìn)行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結(jié)論,通過例2的解決是學(xué)生初步掌握運用概念進(jìn)行簡單論證的基本方法,強(qiáng)化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進(jìn)一步強(qiáng)化解題的規(guī)范性,提高邏輯推理能力,同時讓學(xué)生學(xué)會一些常見的變形方法。
(五)鞏固與探究
1.教材p36練習(xí)2,3
2.探究:二次函數(shù)的單調(diào)性有什么規(guī)律?
(幾何畫板演示,學(xué)生探究)本問題作為機(jī)動題。時間不允許時,就為課后思考題。
設(shè)計意圖:通過觀察圖象,對函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。
通過課堂練習(xí)加深學(xué)生對概念的理解,進(jìn)一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達(dá)到鞏固,消化新知的目的。同時強(qiáng)化解題步驟,形成并提高解題能力。對練習(xí)的思考,讓學(xué)生學(xué)會反思、學(xué)會總結(jié)。
(六)回顧總結(jié)
通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識,同學(xué)們要切記:單調(diào)性是對某個區(qū)間而言的,同時在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進(jìn)行判斷和證明。
設(shè)計意圖:通過小結(jié)突出本節(jié)課的重點,并讓學(xué)生對所學(xué)知識的結(jié)構(gòu)有一個清晰的認(rèn)識,學(xué)會一些解決問題的思想與方法,體會數(shù)學(xué)的和諧美。
(七)課外作業(yè)
1.教材p43習(xí)題1.3A組1(單調(diào)區(qū)間),2(證明單調(diào)性);
2.判斷并證明函數(shù)在上的單調(diào)性。
3.數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認(rèn)為本節(jié)課中的最重要的知識和方法。
設(shè)計意圖:通過作業(yè)1、2進(jìn)一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強(qiáng)化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對本結(jié)內(nèi)容各項目標(biāo)落實的評價。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。
(七)板書設(shè)計(見ppt)
五、評價分析
有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計過程中注意了:第一.教要按照學(xué)的法子來教;第二在學(xué)生已有知識結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”;第三.強(qiáng)化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——歸納總結(jié)”的活動過程,體驗了參與數(shù)學(xué)知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識和能力,成為積極主動的建構(gòu)者。
本節(jié)課圍繞教學(xué)重點,針對教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,_引趣,并注重數(shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。
高中高一數(shù)學(xué)說課稿【篇5】
一、指導(dǎo)思想與理論依據(jù)
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
三、學(xué)情分析
本節(jié)課的授課對象是本校高一(x)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
四、教學(xué)目標(biāo)
(1)基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(2)能力訓(xùn)練目標(biāo):能正確運用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡單的三角函數(shù)求值與化簡;
(3)創(chuàng)新素質(zhì)目標(biāo):通過對公式的推導(dǎo)和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;
(4)個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
五、教學(xué)重點和難點
1、教學(xué)重點:理解并掌握誘導(dǎo)公式。
2、教學(xué)難點:正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
六、教法學(xué)法以及預(yù)期效果分析
高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計與教學(xué)反思
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析。
1、教法
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。
在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
2、學(xué)法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題。
在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。
3、預(yù)期效果
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
高中高一數(shù)學(xué)說課稿【篇6】
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
一、教材特點
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.“問題性”:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.“時代性”與“應(yīng)用性”:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
二、教法分析
選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。
3.在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
三、學(xué)情分析
1、基本情況:12班共x人,男生x人,女生x人;本班相對而言,數(shù)學(xué)尖子約x人,中上等生約x人,中等生約x人,中下生約x人,后進(jìn)生約x人。
14班共x人,男生x人,女生x人;本班相對而言,數(shù)學(xué)尖子約x人,中上等生約x人,中等生約x人,中下生約x人,后進(jìn)生約x人。
2、兩個班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進(jìn)一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機(jī)補(bǔ)充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
四、教學(xué)措施
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
高中高一數(shù)學(xué)說課稿【篇7】
重點難點教學(xué):
1.正確理解映射的概念;
2.函數(shù)相等的兩個條件;
3.求函數(shù)的定義域和值域。
一.教學(xué)過程:
1.使學(xué)生熟練掌握函數(shù)的概念和映射的定義;
2.使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;
3.使學(xué)生掌握函數(shù)的三種表示方法。
二.教學(xué)內(nèi)容:
1.函數(shù)的定義
設(shè)A、B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)()fx和它對應(yīng),那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:
(),yf_A
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{()|}f_A?叫值域(range)。顯然,值域是集合B的子集。
注意:
①“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素定義域、對應(yīng)關(guān)系和值域。
3、映射的定義
設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的任意
一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個映射。
4.區(qū)間及寫法:
設(shè)a、b是兩個實數(shù),且a
(1)滿足不等式axb??的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2)滿足不等式axb??的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法:
①解析法
②列表法
③圖像法
高中高一數(shù)學(xué)說課稿【篇8】
一、教材分析
(一)內(nèi)容說明
函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,中學(xué)數(shù)學(xué)對函數(shù)的研究大致分成了三個階段。
三角函數(shù)是代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學(xué)習(xí)的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學(xué)習(xí)過正、余弦函數(shù)的圖象、三角函數(shù)的有關(guān)概念和公式基礎(chǔ)上進(jìn)行的,其知識和方法將為后續(xù)內(nèi)容的學(xué)習(xí)打下基礎(chǔ),有承上啟下的作用。
本節(jié)課是數(shù)形結(jié)合思想方法的良好素材。數(shù)形結(jié)合是數(shù)學(xué)研究中的重要思想方法和解題方法。
數(shù)學(xué)家華羅庚先生的詩句:……數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休……可以說精辟地道出了數(shù)形結(jié)合的重要性。
本節(jié)通過對數(shù)形結(jié)合的進(jìn)一步認(rèn)識,可以改進(jìn)學(xué)習(xí)方法,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學(xué)的對稱之美、和諧之美。
因此,本節(jié)課在教材中的知識作用和思想地位是相當(dāng)重要的。
(二)課時安排
4.8節(jié)教材安排為4課時,我計劃用5課時
(三)目標(biāo)和重、難點
1.教學(xué)目標(biāo)
教學(xué)目標(biāo)的確定,考慮了以下幾點:
(1)高一學(xué)生有一定的抽象思維能力,而形象思維在學(xué)習(xí)中占有不可替代的地位,所以本節(jié)要緊緊抓住數(shù)形結(jié)合方法進(jìn)行探索;
(2)本班學(xué)生對數(shù)學(xué)科特別是函數(shù)內(nèi)容的學(xué)習(xí)有畏難情緒,所以在內(nèi)容上要降低深難度。
(3)學(xué)會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應(yīng)用主要放在后面的三節(jié)課進(jìn)行。
由此,我確定了以下三個層面的教學(xué)目標(biāo):
(1)知識層面:結(jié)合正弦曲線、余弦曲線,師生共同探索發(fā)現(xiàn)正(余)弦函數(shù)的性質(zhì),讓學(xué)生學(xué)會正確表述正、余函數(shù)的單調(diào)性和對稱性,理解體會周期函數(shù)性質(zhì)的研究過程和數(shù)形結(jié)合的研究方法;
(2)能力層面:通過在教師引導(dǎo)下探索新知的過程,培養(yǎng)學(xué)生觀察、分析、歸納的自學(xué)能力,為學(xué)生學(xué)習(xí)的可持續(xù)發(fā)展打下基礎(chǔ);
(3)情感層面:通過運用數(shù)形結(jié)合思想方法,讓學(xué)生體會(數(shù)學(xué))問題從抽象到形象的轉(zhuǎn)化過程,體會數(shù)學(xué)之美,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的信心和興趣。
2.重、難點
由以上教學(xué)目標(biāo)可知,本節(jié)重點是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會數(shù)形結(jié)合思想方法。
難點是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對稱性的理解。
為什么這樣確定呢?
因為周期概念是學(xué)生第一次接觸,理解上易錯;單調(diào)區(qū)間從圖上容易看出,但用一個區(qū)間形式表示出來,學(xué)生感到困難。
如何克服難點呢?
其一,抓住周期函數(shù)定義中的關(guān)鍵字眼,舉反例說明;
其二,利用函數(shù)的周期性規(guī)律,抓住"橫向距離"和"k∈Z"的含義,充分結(jié)合圖象來理解單調(diào)性和對稱性
二、教法分析
(一)教法說明教法的確定基于如下考慮:
(1)心理學(xué)的研究表明:只有內(nèi)化的東西才能充分外顯,只有學(xué)生自己獲取的知識,他才能靈活應(yīng)用,所以要注重學(xué)生的自主探索。
(2)本節(jié)目的是讓學(xué)生學(xué)會如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導(dǎo)學(xué)生探索,而不是自己探索、學(xué)生觀看,所以教師要引導(dǎo),而且只能引導(dǎo)不能代辦,否則不但沒有教給學(xué)習(xí)方法,而且會讓學(xué)生產(chǎn)生依賴和倦怠。
(3)本節(jié)內(nèi)容屬于本源性知識,一般采用觀察、實驗、歸納、總結(jié)為主的方法,以培養(yǎng)學(xué)生自學(xué)能力。
所以,根據(jù)以人為本,以學(xué)定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學(xué)方法,形成教師點撥引導(dǎo)、學(xué)生積極參與、師生共同探討的課堂結(jié)構(gòu)形式,營造一種民主和諧的課堂氛圍。
(二)教學(xué)手段說明:
為完成本節(jié)課的教學(xué)目標(biāo),突出重點、克服難點,我采取了以下三個教學(xué)手段:
(1)精心設(shè)計課堂提問,整個課堂以問題為線索,帶著問題探索新知,因為沒有問題就沒有發(fā)現(xiàn)。
(2)為便于課堂操作和知識條理化,事先制作正弦函數(shù)、余弦函數(shù)性質(zhì)表,讓學(xué)生當(dāng)堂完成表格的填寫;
(3)為節(jié)省課堂時間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學(xué)更生動形象和連貫。
三、學(xué)法和能力培養(yǎng)
我發(fā)現(xiàn),許多學(xué)生的學(xué)習(xí)方法是:直接記住函數(shù)性質(zhì),在解題中套用結(jié)論,對結(jié)論的來源不理解,知其然不知其所以然,應(yīng)用中不能變通和遷移。
本節(jié)的學(xué)習(xí)方法對后續(xù)內(nèi)容的學(xué)習(xí)具有指導(dǎo)意義。為了培養(yǎng)學(xué)法,充分關(guān)注學(xué)生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學(xué)者的位置上,和學(xué)生共同探索新知,共同體驗數(shù)形結(jié)合的`研究方法,體驗周期函數(shù)的研究思路;幫助學(xué)生實現(xiàn)知識的意義建構(gòu),幫助學(xué)生發(fā)現(xiàn)和總結(jié)學(xué)習(xí)方法,使教師成為學(xué)生學(xué)習(xí)的高級合作伙伴。
教師要做到:
授之以漁,與之合作而漁,使學(xué)生享受漁之樂趣。因此
1.本節(jié)要教給學(xué)生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學(xué)習(xí)方法。
2.通過本課的探索過程,培養(yǎng)學(xué)生觀察、分析、交流、合作、類比、歸納的學(xué)習(xí)能力及數(shù)形結(jié)合(看圖說話)的意識和能力。
四、教學(xué)程序
指導(dǎo)思想是:兩條線索、三大特點、四個環(huán)節(jié)
(一)導(dǎo)入
引出數(shù)形結(jié)合思想方法,強(qiáng)調(diào)其含義和重要性,告訴學(xué)生,本節(jié)課將利用數(shù)形結(jié)合方法來研究,會使學(xué)習(xí)變得輕松有趣。
采用這樣的引入方法,目的是打消學(xué)生對函數(shù)學(xué)習(xí)的畏難情緒,引起學(xué)生注意,也激起學(xué)生好奇和興趣。
(二)新知探索主要環(huán)節(jié),分為兩個部分
教學(xué)過程如下:
第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)
1.定義域、值域2.周期性
3.單調(diào)性(重難點內(nèi)容)
為了突出重點、克服難點,采用以下手段和方法:
(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結(jié)合的重要作用;
(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學(xué)生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學(xué)生的積極性將被調(diào)動起來。
(3)單調(diào)區(qū)間的探索過程是:
先在靠近原點的一個單調(diào)周期內(nèi)找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認(rèn)識過程。
xx教師結(jié)合圖象幫助學(xué)生理解并強(qiáng)調(diào)"距離"("長度")是周期的多少倍
為什么要這樣強(qiáng)調(diào)呢?
因為這是對知識的一種意義建構(gòu),有助于以后理解記憶正弦型函數(shù)的相關(guān)性質(zhì)。
4.對稱性
設(shè)計意圖:
(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。
(2)從正弦函數(shù)的對稱性看到了數(shù)學(xué)的對稱之美、和諧之美,體現(xiàn)了數(shù)學(xué)的審美功能。
高中高一數(shù)學(xué)說課稿【篇9】
教學(xué)目標(biāo):
掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識.
教學(xué)重點:
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點:
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學(xué)們試推.
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時,tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運用這些公式要注意如下幾點:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2+kπ及α≠π4+kπ2(k∈Z)時才成立,否則不成立(因為當(dāng)α=π2+kπ,k∈Z時,tanα的值不存在;當(dāng)α=π4+kπ2,k∈Z時tan2α的值不存在).
當(dāng)α=π2+kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情況下,才有可能成立

