出國留學(xué)網(wǎng)相關(guān)欄目推薦:“二次函數(shù)教案”。
俗話說,磨刀不誤砍柴工。作為教師編寫教案是一種很重要的能力。教案需要具體規(guī)定傳授基礎(chǔ)知識。如何讓教案在課堂中合理的發(fā)揮?編輯陸續(xù)為大家整理了二次函數(shù)教案,僅供參考,歡迎大家閱讀本文。
二次函數(shù)教案 篇1
一、教材分析:
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實(shí)根、有兩個相等實(shí)根、沒有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問題實(shí)際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識與實(shí)際問題的聯(lián)系。
本節(jié)教學(xué)時間安排1課時
二、教學(xué)目標(biāo):
知識技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實(shí)根、兩個相等的實(shí)數(shù)和沒有實(shí)根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).
3.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會學(xué)習(xí)數(shù)學(xué)的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
四、教學(xué)方法:啟發(fā)引導(dǎo) 合作交流
五:教具、學(xué)具:課件
六、教學(xué)過程:
[活動1] 檢查預(yù)習(xí) 引出課題
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
[活動2] 創(chuàng)設(shè)情境 探究新知
問題
1. 課本P94 問題.
2. 結(jié)合圖形指出,為什么有兩個時間球的高度是15m或0m?為什么只在一個時間球的高度是20m?
3. 結(jié)合預(yù)習(xí)題1,完成課本P94 觀察中的題目。
師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
教師重點(diǎn)關(guān)注:
1.學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;
2.學(xué)生在思考問題時能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;
3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
[活動3] 例題學(xué)習(xí) 鞏固提高
問題
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
[活動4] 練習(xí)反饋 鞏固新知
二次函數(shù)教案 篇2
2.4二次函數(shù)=ax2+bx+c的圖象
本節(jié)課在二次函數(shù)=ax2和=ax2+c的圖象的基礎(chǔ)上,進(jìn)一步研究=a(x-h)2和=a(x-h)2+的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況.同時對二次函數(shù)的研究,經(jīng)歷了從簡單到復(fù)雜,從特殊到一般的過程:先是從=x2開始,然后是=ax2,=ax2+c,最后是=a(x-h)2,=a(x-h)2+,=ax2+bx+c.符合學(xué)生的認(rèn)知特點(diǎn),體會建立二次函數(shù)對稱軸和頂點(diǎn)坐標(biāo)公式的必要性.
在教學(xué)中,主要是讓學(xué)生自己動手畫圖象,通過自己的觀察、交流、對比、概括和反思[
等探索活動,使學(xué)生達(dá)到對拋物線自身特點(diǎn)的認(rèn)識和對二次函數(shù)性質(zhì)的理解.并能利用它的性質(zhì)解決問題.
2.4二次函數(shù)=ax2+bx+c的圖象(一)
教學(xué)目標(biāo)
(一)教學(xué)知識點(diǎn)[
1.能夠作出函數(shù)=a(x-h)2和=a(x-h)2+的圖象,并能理解它與=ax2的圖象的關(guān)系.理解a,h,對二次函數(shù)圖象的影響.
2.能夠正確說出=a(x-h)2+圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo).
(二)能力訓(xùn)練要求
1.通過學(xué)生自己的探索活動,對二次函數(shù)性質(zhì)的研究,達(dá)到對拋物線自身特點(diǎn)的認(rèn)識和對二次函數(shù)性質(zhì)的理解.
2.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.
(三)情感與價值觀要求
1.經(jīng)歷觀察、猜想、總結(jié)等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點(diǎn).
2.讓學(xué)生學(xué)會與人合作,并能與他人交流思維的過程和結(jié)果.
教學(xué)重點(diǎn)[:Wz5u.c]
1.經(jīng)歷探索二次函數(shù)=ax2+bx+c的圖象的作法和性質(zhì)的過程.
2.能夠作出=a(x-h)2和=a(x-h)2+的圖象,并能理解它與=ax2的圖象的關(guān)系,理解a、h、對二次函數(shù)圖象的影響.
3.能夠正確說出=a(x-h)2+圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo).
教學(xué)難點(diǎn)
能夠作出=a(x-h)2和=a(x-h)2+的圖象,并能夠理解它與=ax2的圖象的關(guān)系,理解a、h、對二次函數(shù)圖象的影響.
教學(xué)方法
探索——比較——總結(jié)法.
教具準(zhǔn)備
投影片四張
第一張:(記作2.4.1 A)
第二張:(記作2.4.1 B)
第三張:(記作2.4.1 C)
第四張:(記作2.4.1 D)
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境、引入新課
[師]我們已學(xué)習(xí)過兩種類型的二次函數(shù),即=ax2與=ax2+c,知道它們都是軸對稱圖形,對稱軸都是軸,有最大值或最小值.頂點(diǎn)都是原點(diǎn).還知道=ax2+c的圖象是函數(shù)=ax2的圖象經(jīng)過上下移動得到的,那么=ax2的圖象能否左右移動呢?它左右移動后又會得到什么樣的函數(shù)形式,它又有哪些性質(zhì)呢?本節(jié)課我們就來研究有關(guān)問題.
Ⅱ.新課講解
一、比較函數(shù)=3x2與=3(X-1)2的圖象的性質(zhì).
投影片:(2.4 A)
(1)完成下表,并比較3x2和3(x-1)2的值,
它們之間有什么關(guān)系?
X-3-2-101234
3x2
3(x-1)2
(2)在下圖中作出二次函數(shù)=3(x-1)2的圖象.你是怎樣作的?
(3)函數(shù)=3(x-1)2的圖象與=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點(diǎn)坐標(biāo)分別是什么?
(4)x取哪些值時,函數(shù)=3(x-1)2的值隨x值的增大而增大?x取哪些值時,函數(shù)=3(x-1)2的值隨x值的增大而減小?
[師]請大家先自己填表,畫圖象,思考每一個問題,然后互相討論,總結(jié).
[生](1)第二行從左到右依次填:27.12,3,0,3, 12,27,48;第三行從左到右依次填48,27,12,3,0,3, 12,27.
(2)用描點(diǎn)法作出=3(x-1)2的圖象,如上圖.
(3)二次函數(shù))=3(x-1)2的圖象與=3x2的圖象形狀相同,開口方向也相同,但對稱軸和頂點(diǎn)坐標(biāo)不同,=3(x-1)2的圖象的對稱軸是直線x=1,頂點(diǎn)坐標(biāo)是(1,0).
(4)當(dāng)x>1時,函數(shù)=3(x-1)2的值隨x值的增大而增大,x
[師]能否用移動的觀點(diǎn)說明函數(shù)=3x2與=3(x-1)2的圖象之間的關(guān)系呢?
[生]=3(x-1)2的圖象可以看成是函數(shù))=3x2的圖象整體向右平移得到的.
[師]能像上節(jié)課那樣比較它們圖象的性質(zhì)嗎?
[生]相同點(diǎn):
a.圖象都中拋物線,且形狀相同,開口方向相同.
b. 都是軸對稱圖形.
c.都有最小值,最小值都為0.
d.在對稱軸左側(cè),都隨x的增大而減?。趯ΨQ軸右側(cè),都隨x的增大而增大.
不同點(diǎn):
a.對稱軸不同,=3x2的對稱軸是軸=3(x-1)2的對稱軸是x=1.
b. 它們的位置不問.[:Wz5u.c]
c. 它們的頂點(diǎn)坐標(biāo)不同. =3x2的頂點(diǎn)坐標(biāo)為(0,0),=3(x-1)2的頂點(diǎn)坐標(biāo)為(1,0),
聯(lián)系:
把函數(shù)=3x2的圖象向右移動一個單位,則得到函數(shù)=3(x-1)2的圖像.
二、做一做
投影片:(2.4.1 B)
在同一直角坐標(biāo)系中作出函數(shù)=3(x-1)2和=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì).
[生]圖象如下
它們的圖象的性質(zhì)比較如下:
相同點(diǎn):
a.圖象都是拋物線,且形狀相同,開口方向相同.
b. 都足軸對稱圖形,對稱軸都為x=1.
c. 在對稱軸左側(cè),都隨x的增大而減小,在對稱軸右側(cè),都隨x的增大而增大.
不同點(diǎn):
a.它們的頂點(diǎn)不同,最值也不同.=3(x-1)2的頂點(diǎn)坐標(biāo)為(1.0),最小值為0.=3(x-1)2+2的頂點(diǎn)坐標(biāo)為(1,2),最小值為2.
b. 它們的位置不同.
聯(lián)系:
把函數(shù)=3(x-1)2的圖象向上平移2個單位,就得到了函數(shù)=3(x-1)2+2的圖象.
三、總結(jié)函數(shù)=3x2,=3(x-1)2,=3(x-1)2+2的圖象之間的關(guān)系.
[師]通過上畫的討論,大家能夠總結(jié)出這三種函數(shù)圖象之間的關(guān)系嗎?
[生]可以.
二次函數(shù)=3x2,=3(x-1)2,=3(x-1)2+2的圖象都是拋物線.并且形狀相同,開口方向相同,只是位置不同,頂點(diǎn)不同,對稱軸不同,將函數(shù)=3x2的圖象向右平移1個單位,就得到函數(shù)=3(x-1)2的圖象;再向上平移2個單位,就得到函數(shù)=3(x-1)2+2的圖象.
[師]大家還記得=3x2與=3x2-1的圖象之間的關(guān)系嗎?
[生]記得,把函數(shù)=3x2向下平移1個平位,就得到函數(shù)=3x2-1的圖象.
[師]你能系統(tǒng)總結(jié)一下嗎?
[生]將函數(shù)=3x2的圖象向下移動1個單位,就得到了函數(shù)=3x2-1的圖象,向上移動1個單位,就得到函數(shù)=3x2+1的圖象;將=3x2的圖象向右平移動1個單位,就得到函數(shù)=3(x-1)2的圖象:向左移動1個單位,就得到函數(shù)=3(x+1)2的圖象;由函數(shù)=3x2向右平移1個單位、再向上平移2個單位,就得到函數(shù)=3(x-1)2+2的圖象.
[師]下面我們就一般形式來進(jìn)行總結(jié).
投影片:(2.4.1 C)
一般地,平移二次函數(shù)=ax2的圖象便可得到二次函數(shù)為=ax2+c,=a(x-h)2,=a(x-h)2+的圖象.
(1)將=ax2的圖象上下移動便可得到函數(shù)=ax2+c的圖象,當(dāng)c>0時,向上移動,當(dāng)c
(2)將函數(shù)=ax2的圖象左右移動便可得到函數(shù)=a(x-h)2的圖象,當(dāng)h>0時,向右移動,當(dāng)h
(3)將函數(shù)=ax2的圖象既上下移,又左右移,便可得到函數(shù)=a(x-h)+的圖象.
因此,這些函數(shù)的圖象都是一條拋物線,它們的開口方向,對稱軸和頂點(diǎn)坐標(biāo)與a,h,的值有關(guān).
下面大家經(jīng)過討論之后,填寫下表:
=a(x-h)2+開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)
a>0
a<0
四、議一議
投影片:(2,4.1 D)
(1)二次函數(shù)=3(x+1)2的圖象與二次函數(shù)=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點(diǎn)坐標(biāo)分別是什么?
(2)二次函數(shù)=-3(x-2)2+4的圖象與二次函數(shù)=-3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點(diǎn)坐標(biāo)分別是什么?
(3)對于二次函數(shù)=3(x+1)2,當(dāng)x取哪些值時,的值隨x值的增大而增大?當(dāng)x取哪些值時,的值隨x值的增大而減小?二次函數(shù)=3(x+1)2+4呢?
[師]在不畫圖象的情況下,你能回答上面的問題嗎?
[生](1)二次函數(shù)=3(x+1)2的圖象與=3x2的圖象形狀相同,開口方向也相同,但對稱軸和頂點(diǎn)坐標(biāo)不同,=3(x+1)2的圖象的對稱軸是直線x=-1,頂點(diǎn)坐標(biāo)是(-1,0).只要將=3x2的圖象向左平移1個單位,就可以得到=3(x+1)2的圖象.
(2)二次函數(shù)=-3(x-2)2+4的圖象與=-3x2的圖象形狀相同,只是位置不同,將函數(shù)=-3x2的圖象向右平移2個單位,就得到=-3(x-2)2的圖象,再向上平移4個單位,就得到=-3(x-2)2+4的圖象=-3(x-2)2+4的圖象的對稱軸是直線x=2,頂點(diǎn)坐標(biāo)是(2,4).
(3)對于二次函數(shù)=3(x+1)2和=3(x+1)2+4,它們的對稱軸都是x=-1,當(dāng)x-1時,的值隨x值的增大而增大.
Ⅲ.課堂練習(xí)
隨堂練習(xí)
Ⅳ.課時小結(jié)
本節(jié)課進(jìn)一步探究了函數(shù)=3x2與=3(x-1)2,=3(x-1)2+2的圖象有什么關(guān)系,對稱軸和頂點(diǎn)坐標(biāo)分別是什么這些問題.并作了歸納總結(jié).還能利用這個結(jié)果對其他的函數(shù)圖象進(jìn)行討論.
Ⅴ.課后作業(yè)
習(xí)題2.4
Ⅵ.活動與探究
二次函數(shù)= (x+2)2-1與= (x-1)2+2的圖象是由函數(shù)= x2的圖象怎樣移動得到的?它們之間是通過怎樣移動得到的?
解:= (x+2)2-1的圖象是由= x2的圖象向左平移2個單位,再向下平移1個單位得到的,= (x-1)2+2的圖象是由= x2的圖象向右平移1個單位,再向上平移2個單位得到的.
= (x+2)2-1的圖象向右平移3個單位,再向上平移3個單位得到= (x-1)2+2的圖象.
= (x-1)2+2的圖象向左平移3個單位,再向下平移3個單位得到= (x+2)2-1的圖象.
板書設(shè)計(jì)
4.2.1 二次函數(shù)=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)=3x2與=3(x-1)2的
圖象和性質(zhì)(投影片2.4.1 A)
2.做一做(投影片2.4.1 B)
3.總結(jié)函數(shù)=3x2,=3(x-1)2= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)
4.議一議(投影片2.4.1 D)
二、課堂練習(xí)
1.隨堂練習(xí)
2.補(bǔ)充練習(xí)
三、課時小結(jié)
四、課后作業(yè)
備課資料
參考練習(xí)
在同一直角坐標(biāo)系內(nèi)作出函數(shù)=- x2,=- x2-1,=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.
解:圖象略
它們都是拋物線,且開口方向都向下;對稱軸分別為軸軸,直線x=-1;頂點(diǎn)坐標(biāo)分別為(0,0),(0,-1),(-1,-1).
=- x2的圖象向下移動1個單位得到=- x2-1 的圖象;=- x2的圖象向左移動1個單位,向下移動1個單位,得到=- (x+1)2-1的圖象.
二次函數(shù)教案 篇3
教學(xué)目標(biāo)
(一)教學(xué)知識點(diǎn)
1.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
2.進(jìn)一步發(fā)展估算能力.
(二)能力訓(xùn)練要求
1.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).
2.利用圖象法求一元二次方程的近似根,重要的是讓學(xué)生懂得這種求解方程的思路,體驗(yàn)數(shù)形結(jié)合思想.
(三)情感與價值觀要求
通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力.
教學(xué)重點(diǎn)
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
教學(xué)難點(diǎn)
利用二次函數(shù)的圖象求一元二次方程的近似根.
教學(xué)方法
學(xué)生合作交流學(xué)習(xí)法.
教具準(zhǔn)備
投影片三張
第一張:(記作§2.8.2A)
第二張:(記作§2.8.2B)
第三張:(記作§2.8.2C)
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]上節(jié)課我們學(xué)習(xí)了二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),就是y=0時的一元二次方程的根,于是,我們在不解方程的情況下,只要知道二次函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即可.但是在圖象上我們很難準(zhǔn)確地求出方程的解,所以要進(jìn)行估算.本節(jié)課我們將學(xué)習(xí)利用二次函數(shù)的圖象估計(jì)一元二次方程的根.
二次函數(shù)教案 篇4
我今天說課的題目是《二次函數(shù)》,下面我就從教材分析,教法,學(xué)法,教學(xué)過程的設(shè)計(jì)等方面談自己的看法。
一、教材分析
1、教材的地位及作用
函數(shù)是一種重要的數(shù)學(xué)思想,是實(shí)際生活中數(shù)學(xué)建模的重要工具,二次函數(shù)的教學(xué)在初中數(shù)學(xué)教學(xué)中有著重要的地位。本節(jié)內(nèi)容的教學(xué),在函數(shù)的教學(xué)中有著承上啟下的作用。它既是對已學(xué)一次函數(shù)及反比例函數(shù)的復(fù)習(xí),又是對二次函數(shù)知識的延續(xù)和深化,為將來二次函數(shù)一般情形的教學(xué)乃至高中階段函數(shù)的教學(xué)打下基礎(chǔ),做好鋪墊。
2、教學(xué)目標(biāo)
(1)掌握二此函數(shù)的概念并能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。[知識與技能目標(biāo)]
(2)讓學(xué)生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗(yàn)證的學(xué)習(xí)過程,使學(xué)生掌握類比、轉(zhuǎn)化等學(xué)習(xí)數(shù)學(xué)的方法,養(yǎng)成既能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣。[過程與方法目標(biāo)]
(3)讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅,[情感、態(tài)度、價值觀目標(biāo)]
3、教學(xué)的重、難點(diǎn)
重點(diǎn):二次函數(shù)的概念和解析式
難點(diǎn):本節(jié)“合作學(xué)習(xí)”涉及的實(shí)際問題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的概括能力
4、學(xué)情分析
①學(xué)生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。
②學(xué)生個性活潑,積極性高,初步具有對數(shù)學(xué)問題進(jìn)行合作探究的意識與能力。
③初三學(xué)生程度參差不齊,兩極分化已形成。
二、教法學(xué)法分析
1、教法(關(guān)鍵詞:情境、探究、分層)
基于本節(jié)課內(nèi)容的特點(diǎn)和初三學(xué)生的年齡特征,我以“探究式”體驗(yàn)教學(xué)法和“啟發(fā)式”教學(xué)法為主進(jìn)行教學(xué)。讓學(xué)生在開放的情境中,在教師的引導(dǎo)啟發(fā)下,同學(xué)的合作幫助下,通過探究發(fā)現(xiàn),讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成和應(yīng)用過程,加深對數(shù)學(xué)知識的理解。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進(jìn)行分層施教。
2、學(xué)法(關(guān)鍵詞:類比、自主、合作)
根據(jù)學(xué)生的思維特點(diǎn)、認(rèn)知水平,遵循“教必須以學(xué)為立足點(diǎn)”的教育理念,讓每一個學(xué)生自主參與整堂課的知識構(gòu)建。在各個環(huán)節(jié)中引導(dǎo)學(xué)生類比遷移,對照學(xué)習(xí)。以自主探索為主,學(xué)會合作交流,在師生互動、生生互動中讓每個學(xué)生動口,動手,動腦,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性,使學(xué)生由“學(xué)會”變“會學(xué)”和“樂學(xué)”。
3、教學(xué)手段
采用多媒體教學(xué),直觀呈現(xiàn)拋物線和諧、對稱的美,激發(fā)學(xué)生的學(xué)習(xí)興趣,參與熱情,增大教學(xué)容量,提高教學(xué)效率。
三、教學(xué)過程
完整的數(shù)學(xué)學(xué)習(xí)過程是一個不斷探索、發(fā)現(xiàn)、驗(yàn)證的過程,根據(jù)新課標(biāo)要求,根據(jù)“以人為本,以學(xué)定教”的教學(xué)理念,結(jié)合學(xué)生實(shí)際,制訂以下教學(xué)流程:
(一)、創(chuàng)設(shè)情境溫故引新
以提問的形式復(fù)習(xí)一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學(xué)生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:
(1)你們喜歡打籃球嗎?
(2)你們知道:投籃時,籃球運(yùn)動的路線是什么曲線?怎樣計(jì)算籃球達(dá)到最高點(diǎn)時的高度?
從而引出課題〈〈二次函數(shù)〉〉,導(dǎo)入新課
(二)、合作學(xué)習(xí),探索新知
為了更貼近生活,我先設(shè)計(jì)了兩個和實(shí)際生活有關(guān)的練習(xí)題。鼓勵學(xué)生積極發(fā)言,充分調(diào)動學(xué)生的主動性。然后出示課本上的兩個問題,在這個環(huán)節(jié)中,我讓學(xué)生在教師的引導(dǎo)下,先獨(dú)立思考,再以小組為單位交流成果,以培養(yǎng)學(xué)生自主探索、合作探究的能力。四個解析式都列出來后。讓學(xué)生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學(xué)生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學(xué)生的語言表達(dá)能力。
學(xué)生在學(xué)習(xí)二次函數(shù)的概念時要求學(xué)生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個函數(shù)是不是二次函數(shù)
(三)當(dāng)堂訓(xùn)練鞏固提高
由于學(xué)生層次不一,練習(xí)的設(shè)計(jì)充分考慮到學(xué)生的個體差異,滿足不同層次學(xué)生的學(xué)習(xí)需求,實(shí)現(xiàn)有“差異的”發(fā)展。讓每一個學(xué)生都感受成功的喜悅。我設(shè)計(jì)了3道練習(xí)題,其難易程度逐步提高,第一道題面對所有的學(xué)生,學(xué)生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強(qiáng)調(diào)該化簡的必須化簡后才可以判斷。第二道題讓學(xué)生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對二次函數(shù)概念的理解。最后一道題綜合性較強(qiáng),可以提高他們的綜合素質(zhì)。
(四)、小結(jié)歸納拓展轉(zhuǎn)化
讓學(xué)生用自己的語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識條理化,進(jìn)一步掌握二次函數(shù)的概念。
(五)布置作業(yè)學(xué)以致用
作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識,檢驗(yàn)學(xué)生掌握知識的情況,發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中遺漏與不足。同時,選做題具有總結(jié)性,可引導(dǎo)學(xué)生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系、
四、評價分析
本節(jié)課的教學(xué)從學(xué)生已有的認(rèn)知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,加深對所學(xué)知識的理解,從而突破重難點(diǎn)。整節(jié)課注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,我全程關(guān)注每一個學(xué)生的學(xué)習(xí)狀態(tài),進(jìn)行分層施教,因勢利導(dǎo),隨機(jī)應(yīng)變,適時調(diào)整教學(xué)環(huán)節(jié),,實(shí)現(xiàn)評價主體和形式的多樣化,把握評價的時機(jī)與尺度,激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達(dá)到最佳狀態(tài)。
五、教學(xué)反思
1、本節(jié)課通過學(xué)生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。
2、本節(jié)課設(shè)計(jì)的以問題為主線,培養(yǎng)學(xué)生有條理思考問題的習(xí)慣和歸納概括能力,并重視培養(yǎng)學(xué)生的語言表達(dá)能力。同時不斷激發(fā)學(xué)生的探索精神,提高了學(xué)生分析和解決問題的能力。使學(xué)生有成功體驗(yàn)。
以上是我對二次函數(shù)這節(jié)課的教學(xué)內(nèi)容的設(shè)計(jì),請大家多提寶貴意見,謝謝大家!
二次函數(shù)教案 篇5
一、教材分析:
1、教材所處的地位:
二次函數(shù)是滬科版初中數(shù)學(xué)九年級(上冊)第22章的內(nèi)容,在此之前,學(xué)生在八年級已經(jīng)學(xué)過了函數(shù)及一次函數(shù)的內(nèi)容,對于函數(shù)已經(jīng)有了初步的認(rèn)識。從一次函數(shù)的學(xué)習(xí)來看,學(xué)習(xí)一種函數(shù)大致包括以下內(nèi)容:通過具體實(shí)例認(rèn)識這種函數(shù);探索這種函數(shù)的圖象和性質(zhì),利用這種函數(shù)解決實(shí)際問題;探索這種函數(shù)與相應(yīng)方程不等式的關(guān)系。本章“二次函數(shù)”的學(xué)習(xí)也是從以上幾個方面展開的。本節(jié)課的主要內(nèi)容在于使學(xué)生認(rèn)識并了解兩個變量之間的二次函數(shù)的關(guān)系,為二次函數(shù)的后續(xù)學(xué)習(xí)奠定基礎(chǔ)
2、教學(xué)目的要求:
(1)學(xué)生經(jīng)歷從實(shí)際問題中抽象出兩個變量之間的二次函數(shù)關(guān)系的過程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系;
(2)讓學(xué)生學(xué)習(xí)了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關(guān)系;
(3)知道實(shí)際問題中存在的二次函數(shù)關(guān)系中,多自變量的取值范圍的要求。
(4)把數(shù)學(xué)問題和實(shí)際問題相聯(lián)系,使學(xué)生初步體會數(shù)學(xué)與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。
3、教學(xué)重點(diǎn)和難點(diǎn)
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):
(1)二次函數(shù)的概念
(2)能夠表示簡單變量之間的二次函數(shù)關(guān)系.
難點(diǎn):
具體的分析、確定實(shí)際問題中函數(shù)關(guān)系式
二.教法、學(xué)法分析:
下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?BR> 1、教法研究
教學(xué)中教師應(yīng)當(dāng)暴露概念的再創(chuàng)造過程,鼓勵學(xué)生不但要動口、動腦,而且要動手,學(xué)生經(jīng)過自己親身的實(shí)踐活動,形成自己的經(jīng)驗(yàn)、猜想,產(chǎn)生對結(jié)論的感知,這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會主動學(xué)習(xí),學(xué)會研究問題的方法,培養(yǎng)學(xué)生的能力。本節(jié)課的設(shè)計(jì)堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
2、學(xué)法研究
初中學(xué)生的思維方式往往還是比較具象的,要讓他們在問題的探究過程中充分體驗(yàn)問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進(jìn)行交流甚至爭論,這樣既可以加深學(xué)生對問題的理解又可以讓學(xué)生體驗(yàn)獲得學(xué)習(xí)的快樂。
3、教學(xué)方式
(1)由于本節(jié)課的內(nèi)容是學(xué)生在學(xué)習(xí)了《一次函數(shù)》和《正比例函數(shù)》的基礎(chǔ)上的加深,所以可以利用學(xué)生已有的知識在問題一、二中放手讓學(xué)生先去探究探究兩個問題中的變量之間的關(guān)系,在得到具體的關(guān)系式后,再引導(dǎo)學(xué)生觀察關(guān)系式都有著什么樣的特點(diǎn),可以和多項(xiàng)式中的二次三項(xiàng)式或一元二次方程比較認(rèn)識,并最終得出二次函數(shù)的一般式及二次項(xiàng)系數(shù)的取值為什么不為零的道理。
(2)要特別提醒學(xué)生注意:二次函數(shù)是解決實(shí)際生活生產(chǎn)的一個很有效的模板,因而對二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實(shí)際中加以綜合討論和認(rèn)定。
(3)可以多讓學(xué)生解決實(shí)際生活中的一些具有二次函數(shù)關(guān)系的實(shí)例來加深和提高學(xué)生對這一關(guān)系模型的理解。
三.教學(xué)流程分析:
這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
1、溫故知新—揭示課題
由回顧所學(xué)過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會認(rèn)識那一種函數(shù)呢?再由例子打籃球投籃時籃球運(yùn)動的軌跡如何?何時達(dá)到最高點(diǎn)?引入二次函數(shù)。
2、自我嘗試、合作探究—探求新知
通過學(xué)生自己獨(dú)立解決運(yùn)用函數(shù)知識表述變量間關(guān)系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學(xué)生間互動,集群體力量,共破難關(guān),來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。
3、小試身手—循序漸進(jìn)
本組題目是對新學(xué)的直接應(yīng)用,目的在于使學(xué)生能辨認(rèn)二次函數(shù),準(zhǔn)確指出a、b、c,并應(yīng)用其定義求字母系數(shù)的值,能應(yīng)用二次函數(shù)準(zhǔn)確表示具體問題中的變量間關(guān)系。本組題目的解決以學(xué)生快速解答為主,重點(diǎn)對第2題分析解決方法。這一環(huán)節(jié)主要由學(xué)生處理解決,以檢查學(xué)生的掌握程度。
4、課堂回眸—?dú)w納提高
本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。
5、課堂檢測—測評反饋
共有6個題目,由學(xué)生獨(dú)自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學(xué)生或獨(dú)自或同組交流均可。教師多以巡視為主,注意掌握學(xué)生對本節(jié)的掌握情況。
6、作業(yè)布置
作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎(chǔ)訓(xùn)練為必做題,全員均做;綜合應(yīng)用為選做題,可供學(xué)有余力的學(xué)生能力提升用。
四、對本節(jié)課的一點(diǎn)看法
通過引入實(shí)例,豐富學(xué)生認(rèn)識,理解新知識的意義,進(jìn)而擺脫其原型,從而進(jìn)行更深層次的研究,這種“數(shù)學(xué)化”的方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對于學(xué)生的終身發(fā)展也有一定的作用。
二次函數(shù)教案 篇6
〖大綱要求〗
1. 理解二次函數(shù)的概念;
2. 會把二次函數(shù)的一般式化為頂點(diǎn)式,確定圖象的頂點(diǎn)坐標(biāo)、對稱軸和開口方向,會用描點(diǎn)法畫二次函數(shù)的圖象;
3. 會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;
4. 會用待定系數(shù)法求二次函數(shù)的解析式;
5. 利用二次函數(shù)的圖象,了解二次函數(shù)的增減性,會求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)和函數(shù)的最大值、最小值,了解二次函數(shù)與一元二次方程和不等式之間的聯(lián)系,數(shù)學(xué)教案-二次函數(shù)。
內(nèi)容
(1)二次函數(shù)及其圖象
如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么,y叫做x的二次函數(shù)。
二次函數(shù)的圖象是拋物線,可用描點(diǎn)法畫出二次函數(shù)的圖象。
(2)拋物線的頂點(diǎn)、對稱軸和開口方向
拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點(diǎn)M離墻1米,離地面米,則水流下落點(diǎn)B離墻距離OB是( )
(A)2米 (B)3米 (C)4米 (D)5米
三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)
21.已知:直線y=x+k過點(diǎn)A(4,-3)。(1)求k的值;(2)判斷點(diǎn)B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個象限。
22.已知拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對稱軸為x=,
(1) 求這條拋物線的解析式;
(2) 試證明這條拋物線與X軸的兩個交點(diǎn)中,必有一點(diǎn)C,使得對于x軸上任意一點(diǎn)D都有AC+BC≤AD+BD。
23.已知:金屬棒的長1是溫度t的一次函數(shù),現(xiàn)有一根金屬棒,在O℃時長度為200cm,溫度提高1℃,它就伸長0.002cm。
(1) 求這根金屬棒長度l與溫度t的函數(shù)關(guān)系式;
(2) 當(dāng)溫度為100℃時,求這根金屬棒的長度;
(3) 當(dāng)這根金屬棒加熱后長度伸長到201.6cm時,求這時金屬棒的溫度。
24.已知x1,x2,是關(guān)于x的方程x2-3x+m=0的兩個不同的實(shí)數(shù)根,設(shè)s=x12+x22
(1) 求S關(guān)于m的解析式;并求m的取值范圍;
(2) 當(dāng)函數(shù)值s=7時,求x13+8x2的值;
25.已知拋物線y=x2-(a+2)x+9頂點(diǎn)在坐標(biāo)軸上,求a的值。
26、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截?。粒牛剑拢疲剑模牵剑?,已知AB=6,CD=3,AD=4,求:
(1) 四邊形CGEF的面積S關(guān)于x的函數(shù)表達(dá)式和X的取值范圍;
(2) 當(dāng)x為何值時,S的數(shù)值是x的4倍。
27、國家對某種產(chǎn)品的稅收標(biāo)準(zhǔn)原定每銷售100元需繳稅8元(即稅率為8%),臺洲經(jīng)濟(jì)開發(fā)區(qū)某工廠計(jì)劃銷售這種產(chǎn)品m噸,每噸2000元。國家為了減輕工人負(fù)擔(dān),將稅收調(diào)整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴(kuò)大了生產(chǎn),實(shí)際銷售比原計(jì)劃增加2x%。
(1) 寫出調(diào)整后稅款y(元)與x的函數(shù)關(guān)系式,指出x的取值范圍;
(2) 要使調(diào)整后稅款等于原計(jì)劃稅款(銷售m噸,稅率為8%)的78%,求x的值.
28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)為B,C(B點(diǎn)在C點(diǎn)左邊)
(1) 寫出A,B,C三點(diǎn)的坐標(biāo);
(2) 設(shè)m=a2-2a+4試問是否存在實(shí)數(shù)a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說明理由;
(3) 設(shè)m=a2-2a+4,當(dāng)∠BAC最大時,求實(shí)數(shù)a的值。
習(xí)題2:
一.填空(20分)
1.二次函數(shù)=2(x - )2 +1圖象的對稱軸是 。
2.函數(shù)y= 的自變量的取值范圍是 。
3.若一次函數(shù)y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。
4.已知關(guān)于的二次函數(shù)圖象頂點(diǎn)(1,-1),且圖象過點(diǎn)(0,-3),則這個二次函數(shù)解析式為 。
5.若y與x2成反比例,位于第四象限的一點(diǎn)P(a,b)在這個函數(shù)圖象上,且a,b是方程x2-x -12=0的兩根,則這個函數(shù)的關(guān)系式 。
6.已知點(diǎn)P(1,a)在反比例函數(shù)y= (k≠0)的圖象上,其中a=m2+2m+3(m為實(shí)數(shù)),則這個函數(shù)圖象在第 象限。
7. x,y滿足等式x= ,把y寫成x的函數(shù) ,其中自變量x的取值范圍是 。
8.二次函數(shù)y=ax2+bx+c+(a 0)的圖象如圖,則點(diǎn)P(2a-3,b+2)
在坐標(biāo)系中位于第 象限
9.二次函數(shù)y=(x-1)2+(x-3)2,當(dāng)x= 時,達(dá)到最小值 。
10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點(diǎn),已知x1x2=x1+x2+49,要使拋物線經(jīng)過原點(diǎn),應(yīng)將它向右平移 個單位。
二.選擇題(30分)
11.拋物線y=x2+6x+8與y軸交點(diǎn)坐標(biāo)( )
(A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)
12.拋物線y=- (x+1)2+3的頂點(diǎn)坐標(biāo)( )
(A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)
13.如圖,如果函數(shù)y=kx+b的圖象在第一、二、三象限,那么函數(shù)y=kx2+bx-1的圖象大致是( )
14.函數(shù)y= 的自變量x的取值范圍是( )
(A)x 2 (B)x- 2且x 1 (D)x 2且x –1
15.把拋物線y=3x2先向上平移2個單位,再向右平移3個單位,所得拋物線的解析式是( )
(A)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2
16.已知拋物線=x2+2mx+m -7與x軸的兩個交點(diǎn)在點(diǎn)(1,0)兩旁,則關(guān)于x的方程 x2+(m+1)x+m2+5=0的根的情況是( )
(A)有兩個正根 (B)有兩個負(fù)數(shù)根 (C)有一正根和一個負(fù)根 (D)無實(shí)根
17.函數(shù)y=- x的圖象與圖象y=x+1的交點(diǎn)在( )
(A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限
18.如果以y軸為對稱軸的拋物線y=ax2+bx+c的圖象,如圖,
則代數(shù)式b+c-a與0的關(guān)系( )
(A)b+c-a=0 (B)b+c-a>0 (C)b+c-a
19.已知:二直線y=- x +6和y=x - 2,它們與y軸所圍成的三角形的面積為( )
(A)6 (B)10 (C)20 (D)12
20.某學(xué)生從家里去學(xué)校,開始時勻速跑步前進(jìn),跑累了后,再勻速步行余下的路程,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)》。下圖所示圖中,橫軸表示該生從家里出發(fā)的時間t,縱軸表示離學(xué)校的路程s,則路程s與時間t之間的函數(shù)關(guān)系的圖象大致是( )
三.解答題(21~23每題5分,24~28每題7分,共50分)
21.已知拋物線y=ax2+bx+c(a 0)與x軸的兩交點(diǎn)的橫坐標(biāo)分別是-1和3,與y軸交點(diǎn)的縱坐標(biāo)是- ;
(1)確定拋物線的解析式;
(2)用配方法確定拋物線的開口方向,對稱軸和頂點(diǎn)坐標(biāo)。
22、如圖拋物線與直線 都經(jīng)過坐標(biāo)軸的正半軸上A,B兩點(diǎn),該拋物線的對稱軸x=—1,與x軸交于點(diǎn)C,且∠ABC=90°求:
(1)直線AB的解析式;
(2)拋物線的解析式。
23、某商場銷售一批名脾襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn)每件襯衫降價1元, 商場平均每天可多售出2件:
(1)若商場平均每天要盈利1200元,每件襯衫要降價多少元,
(2)每件襯衫降價多少元時,商場平均每天盈利最多?
24、已知:二次函數(shù) 和 的圖象都經(jīng)過x軸上兩個不同的點(diǎn)M、N,求a、b的值。
25、如圖,已知⊿ABC是邊長為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A的坐標(biāo)為{—1,0),求
(1)B,C,D三點(diǎn)的坐標(biāo);
(2)拋物線 經(jīng)過B,C,D三點(diǎn),求它的解析式;
(3)過點(diǎn)D作DE∥AB交過B,C,D三點(diǎn)的拋物線于E,求DE的長。
26 某市電力公司為了鼓勵居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月用電不超100度
時,按每度0.57元計(jì)費(fèi):每月用電超過100度時.其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過部分按每度0.50元計(jì)費(fèi)。
(1)設(shè)月用電x度時,應(yīng)交電費(fèi)y元,當(dāng)x≤100和x>100時,分別寫出y關(guān)于x的函數(shù)
關(guān)系式;
(1)求證;不論m取何值,拋物線與x軸必有兩個交點(diǎn),并且有一個交點(diǎn)是A(2,0);
(2)設(shè)拋物線與x軸的另一個交點(diǎn)為B,AB的長為d,求d與m之間的函數(shù)關(guān)系式;
(3)設(shè)d=10,P(a,b)為拋物線上一點(diǎn):
①當(dāng)⊿ABP是直角三角形時,求b的值;
②當(dāng)⊿ABP是銳角三角形,鈍角三角形時,分別寫出b的取值范圍(第2題不要求寫出過程)
28、已知二次函數(shù)的圖象 與x軸的交點(diǎn)為A,B(點(diǎn)B在點(diǎn)A的右邊),與y軸的交點(diǎn)為C;
(1)若⊿ABC為Rt⊿,求m的值;
(1)在⊿ABC中,若AC=BC,求sin∠ACB的值;
(3)設(shè)⊿ABC的面積為S,求當(dāng)m為何值時,s有最小值.并求這個最小值。
二次函數(shù)教案 篇7
1.說教材
本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學(xué)》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。
本節(jié)課中的教學(xué)重點(diǎn)利用描點(diǎn)法畫出二次函數(shù)的圖像,建構(gòu)符合學(xué)生認(rèn)知結(jié)構(gòu)的知識體系,教學(xué)難點(diǎn)是運(yùn)用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點(diǎn)坐標(biāo)。基于以上對教材的認(rèn)識,根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標(biāo)。
2.說目標(biāo)
【知識與能力】:
理解二次函數(shù)的意義。
會用描點(diǎn)法畫出函數(shù)y = ax2的圖象。
知道拋物線的有關(guān)概念
會根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開口方向、對稱軸以及拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)。
【過程與方法】:
1、通過二次函數(shù)的教學(xué)進(jìn)一步體會研究函數(shù)的一般方法,加深對于數(shù)形結(jié)合思想的認(rèn)識。
2.綜合運(yùn)用所學(xué)知識、方法去解決數(shù)學(xué)問題,培養(yǎng)學(xué)生提出、分析、解決、歸納問題的數(shù)學(xué)能力,改善學(xué)生的數(shù)學(xué)思維品質(zhì)。
【情感與態(tài)度目標(biāo)】:
在數(shù)學(xué)教學(xué)中滲透美的教育,讓學(xué)生感受二次函數(shù)圖像的對2
稱之美,激發(fā)學(xué)生的學(xué)習(xí)興趣。認(rèn)識到數(shù)學(xué)源于生活,用于生活的辯證觀點(diǎn)。
3.說教學(xué)方法
教法選擇與教學(xué)手段:基于本節(jié)課的特點(diǎn)是學(xué)習(xí)新知及其綜合運(yùn)用,應(yīng)著重采用復(fù)習(xí)與總結(jié)的教學(xué)方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復(fù)習(xí)入手,通過提問思考、歸納總結(jié)、綜合運(yùn)用等形式對二次函數(shù)圖像及其性質(zhì)進(jìn)行有針對性的、系統(tǒng)性的教學(xué)。教學(xué)的模式為學(xué)生思考,討論,教師分析,演示、師生共同總結(jié)歸納。
利用白板的動態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進(jìn)行分析比較和歸納。
學(xué)法指導(dǎo):讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
最后,我來具體談一談本節(jié)課的教學(xué)過程。
4.說教學(xué)過程
(一)為對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進(jìn)行重構(gòu)做準(zhǔn)備。通過回憶復(fù)習(xí)一次函數(shù)和反比例函數(shù)圖像及其性質(zhì)等相關(guān)知識引入新課。利用描點(diǎn)法畫出二次函數(shù)的圖象,總結(jié)規(guī)律,會根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開口方向、對稱軸。說出a為何值時y隨x增大而增大(增大而減小),引導(dǎo)學(xué)生掌握用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì)。運(yùn)用聯(lián)想、概括方法對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進(jìn)行梳理,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學(xué)生的化歸遷移的數(shù)學(xué)思維,培養(yǎng)學(xué)生的轉(zhuǎn)化能力。
(二)通過對二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),采用學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)構(gòu)成的練習(xí)題講解模式,鞏固二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進(jìn)一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。
(三)反思概括,方法總結(jié)
總結(jié)本節(jié)課的知識點(diǎn)、重點(diǎn)和難點(diǎn),著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法,學(xué)會用化歸思想,解決實(shí)際問題。培養(yǎng)學(xué)生由題及法,由法及類的數(shù)學(xué)總結(jié)歸納方法。
(四)作業(yè)
課后通過練習(xí)來鞏固本節(jié)課所復(fù)習(xí)的知識點(diǎn)、重點(diǎn)和難點(diǎn),強(qiáng)化教學(xué)目標(biāo)。
各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會隨著學(xué)生和教師的靈性發(fā)揮而隨機(jī)生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
二次函數(shù)教案 篇8
【知識與技能】
1.會用描點(diǎn)法畫二次函數(shù)=ax2+bx+c的圖象.
2.會用配方法求拋物線=ax2+bx+c的頂點(diǎn)坐標(biāo)、開口方向、對稱軸、隨x的增減性.
3.能通過配方求出二次函數(shù)=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問題中的最大值或最小值.
【過程與方法】
1.經(jīng)歷探索二次函數(shù)=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會建立二次函數(shù)=ax2+bx+c(a≠0)對稱軸和頂點(diǎn)坐標(biāo)公式的必要性.
2.在學(xué)習(xí)=ax2+bx+c(a≠0)的性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.
【情感態(tài)度】
進(jìn)一步體會由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動的意識.
【教學(xué)重點(diǎn)】
①用配方法求=ax2+bx+c的頂點(diǎn)坐標(biāo);②會用描點(diǎn)法畫=ax2+bx+c的圖象并能說出圖象的性質(zhì).
【教學(xué)難點(diǎn)】
能利用二次函數(shù)=ax2+bx+c(a≠0)的對稱軸和頂點(diǎn)坐標(biāo)公式,解決一些問題,能通過對稱性畫出二次函數(shù)=ax2+bx+c(a≠0)的圖象.
一、情境導(dǎo)入,初步認(rèn)識
請同學(xué)們完成下列問題.
1.把二次函數(shù)=-2x2+6x-1化成=a(x-h)2+的形式.
2.寫出二次函數(shù)=-2x2+6x-1的開口方向,對稱軸及頂點(diǎn)坐標(biāo).
3.畫=-2x2+6x-1的圖象.
4.拋物線=-2x2如何平移得到=-2x2+6x-1的圖象.
5.二次函數(shù)=-2x2+6x-1的隨x的增減性如何?
【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會=ax2+bx+c與=a(x-h)2+的轉(zhuǎn)化過程.
二、思考探究,獲取新知
探究1 如何畫=ax2+bx+c圖象,你可以歸納為哪幾步?
學(xué)生回答、教師點(diǎn)評:
一般分為三步:
1.先用配方法求出=ax2+bx+c的對稱軸和頂點(diǎn)坐標(biāo).
2.列表,描點(diǎn),連線畫出對稱軸右邊的部分圖象.
3.利用對稱點(diǎn),畫出對稱軸左邊的部分圖象.
探究2 二次函數(shù)=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?
二次函數(shù)教案 篇9
一、教材分析
1.地位和作用
(1)函數(shù)是初等數(shù)學(xué)中最基本的概念之一,貫穿于整個初等數(shù)學(xué)體系之中,也是實(shí)際生活中數(shù)學(xué)建模的重要工具之一.二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆淮安市中考試題中,二次函數(shù)都是不可缺少的內(nèi)容。
(2)二次函數(shù)的圖像和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動作用。
(3)二次函數(shù)與一元二次方程、不等式等知識的聯(lián)系,使學(xué)生能更好地將所學(xué)知識融會貫通.
2.課標(biāo)要求:
①通過對實(shí)際問題情境的分析確定二次函數(shù)的表達(dá)式,并體會二次函數(shù)的意義。
②會用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì)。
③會根據(jù)公式確定圖象的頂點(diǎn)、開口方向和對稱軸(公式不要求記憶和推導(dǎo)),并能解決簡單的實(shí)際問題。
④會利用二次函數(shù)的圖象求一元二次方程的近似解。
3.學(xué)情分析
(1)初三學(xué)生在新課的學(xué)習(xí)中已掌握二次函數(shù)的定義、圖像及性質(zhì)等基本知識。
(2)學(xué)生的分析、理解能力較學(xué)習(xí)新課時有明顯提高。
(3)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情很高,思維敏捷,具有一定的自主探究和合作學(xué)習(xí)的能力。
(4)學(xué)生能力差異較大,兩極分化明顯。
4.教學(xué)目標(biāo)
認(rèn)知目標(biāo)
(1)掌握二次函數(shù) y=ax2+bx+c圖像與系數(shù)符號之間的關(guān)系。
通過復(fù)習(xí),掌握各類形式的二次函數(shù)解析式求解方法和思路,能夠一題多解,發(fā)散提高學(xué)生的創(chuàng)造思維能力.
能力目標(biāo)
提高學(xué)生對知識的整合能力和分析能力.
情感目標(biāo)
制作動畫增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美.在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅。
5.教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):(!)掌握二次函數(shù)y=ax2+bx+c圖像與系數(shù)符號之間的關(guān)系。
(2) 各類形式的二次函數(shù)解析式的求解方法和思路.
難點(diǎn):(1)已知二次函數(shù)的解析式說出函數(shù)性質(zhì)
(2)運(yùn)用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問題.
二、教學(xué)方法:
1.師生互動探究式教學(xué),以課標(biāo)為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知心理和已有的認(rèn)知水平開展教學(xué).形成學(xué)生自動、生生助動、師生互動,教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進(jìn)行分層施教,讓每一個學(xué)生都能獲得知識,能力得到提高。
2.將知識點(diǎn)分類,讓學(xué)生通過這個框架結(jié)構(gòu)很容易看出不同解析式表示的二次函數(shù)的內(nèi)在聯(lián)系,讓學(xué)生形成一個清晰、系統(tǒng)、完整的知識網(wǎng)絡(luò)。
三、學(xué)法指導(dǎo):
1.學(xué)法引導(dǎo)
“授人之魚,不如授人之漁”在教學(xué)過程中,不但要傳授學(xué)生基本知識,還要培育學(xué)生主動思考,親自動手,自我發(fā)現(xiàn)等能力,增強(qiáng)學(xué)生的綜合素質(zhì),。
2.學(xué)法分析:新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主學(xué)習(xí),合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動手”、“動腦”、“動口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。
四、教學(xué)過程:
1、教學(xué)環(huán)節(jié)設(shè)計(jì):
根據(jù)教材的結(jié)構(gòu)特點(diǎn),緊緊抓住新舊知識的內(nèi)在聯(lián)系,運(yùn)用類比、聯(lián)想、轉(zhuǎn)化的思想,突破難點(diǎn).
本節(jié)課的教學(xué)設(shè)計(jì)環(huán)節(jié):
創(chuàng)設(shè)情境,引入新知:復(fù)習(xí)舊知識的目的是對學(xué)生新課應(yīng)具備的“認(rèn)知前提能力”和“情感前提特征進(jìn)行檢測判斷”。學(xué)生自主完成,不僅體現(xiàn)學(xué)生的自主學(xué)習(xí)意識,調(diào)動學(xué)生學(xué)習(xí)積極性,也能為課堂教學(xué)掃清障礙。為了更好地理解、掌握二次函數(shù)圖像與系數(shù)之間的關(guān)系,根據(jù)不同學(xué)生的學(xué)習(xí)需要,按照分層遞進(jìn)的教學(xué)原則,設(shè)計(jì)安排了6個由淺入深的例題.讓每一個學(xué)生都能為下一步的探究做好準(zhǔn)備。
自主探究,合作交流:本環(huán)節(jié)通過開放性題的設(shè)置,發(fā)散學(xué)生思維,學(xué)生對二次函數(shù)的性質(zhì)作出全面分析。讓學(xué)生在教師的引導(dǎo)下,獨(dú)立思考,相互交流,培養(yǎng)學(xué)生自主探索,合作探究的能力。通過學(xué)生觀察、思考、交流,經(jīng)歷發(fā)現(xiàn)過程,加深對重點(diǎn)知識的理解。
運(yùn)用知識,體驗(yàn)成功:根據(jù)不同層次的學(xué)生,同時配有兩個由低到高、層次不同的鞏固性習(xí)題,體現(xiàn)漸進(jìn)性原則,希望學(xué)生能將知識轉(zhuǎn)化為技能。讓每一個學(xué)生獲得成功,感受成功的喜悅。
安排三個層次的練習(xí)。
(一)課前預(yù)習(xí)
(二)典型例題分析
通過反饋使學(xué)生掌握重點(diǎn)內(nèi)容。
(三)綜合應(yīng)用能力提高
既培養(yǎng)學(xué)生運(yùn)用知識的能力,又培養(yǎng)學(xué)生的創(chuàng)新意識。引導(dǎo)學(xué)生對學(xué)習(xí)內(nèi)容進(jìn)行梳理,將知識系統(tǒng)化,條理化,網(wǎng)絡(luò)化,對在獲取新知識中體現(xiàn)出來的數(shù)學(xué)思想、方法、策略進(jìn)行反思,從而加深對知識的理解。并增強(qiáng)學(xué)生分析問題,運(yùn)用知識的能力。
二次函數(shù)教案 篇10
二次函數(shù)的應(yīng)用
教學(xué)設(shè)計(jì)思想:本節(jié)主要研究的是與二次函數(shù)有關(guān)的實(shí)際問題,重點(diǎn)是實(shí)際應(yīng)用題,在教學(xué)過程中讓學(xué)生運(yùn)用二次函數(shù)的知識分析問題、解決問題,在運(yùn)用中體會二次函數(shù)的實(shí)際意義。二次函數(shù)與一元二次方程、一元二次不等式有密切聯(lián)系,在學(xué)習(xí)過程中應(yīng)把二次函數(shù)與之有關(guān)知識聯(lián)系起來,融會貫通,使學(xué)生的認(rèn)識更加深刻。另外,在利用圖像法解方程時,圖像應(yīng)畫得準(zhǔn)確一些,使求得的解更準(zhǔn)確,在求解過程中體會數(shù)形結(jié)合的思想。
教學(xué)目標(biāo):
1.知識與技能
會運(yùn)用二次函數(shù)計(jì)其圖像的知識解決現(xiàn)實(shí)生活中的實(shí)際問題。
2.過程與方法
通過本節(jié)內(nèi)容的學(xué)習(xí),提高自主探索、團(tuán)結(jié)合作的能力,在運(yùn)用知識解決問題中體會二次函數(shù)的應(yīng)用意義及數(shù)學(xué)轉(zhuǎn)化思想。
3.情感、態(tài)度與價值觀
通過學(xué)生之間的討論、交流和探索,建立合作意識和提高探索能力,激發(fā)學(xué)習(xí)的興趣和欲望。
教學(xué)重點(diǎn):解決與二次函數(shù)有關(guān)的實(shí)際應(yīng)用題。
教學(xué)難點(diǎn):二次函數(shù)的應(yīng)用。
教學(xué)媒體:幻燈片,計(jì)算器。
教學(xué)安排:3課時。
教學(xué)方法:小組討論,探究式。
教學(xué)過程:
第一課時:
Ⅰ.情景導(dǎo)入:
師:由二次函數(shù)的一般形式y(tǒng)= (a0),你會有什么聯(lián)想?
生:老師,我想到了一元二次方程的一般形式 (a0)。
師:不錯,正因?yàn)槿绱耍袝r我們就將二次函數(shù)的有關(guān)問題轉(zhuǎn)化為一元二次方程的問題來解決。
現(xiàn)在大家來做下面這兩道題:(幻燈片顯示)
1.解方程 。
2.畫出二次函數(shù)y= 的圖像。
教師找兩個學(xué)生解答,作為板書。
Ⅱ.新課講授
同學(xué)們思考下面的問題,可以共同討論:
1.二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)是什么?它與方程 的根有什么關(guān)系?
2.如果方程 (a0)有實(shí)數(shù)根,那么它的根和二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)有什么關(guān)系?
生甲:老師,由畫出的圖像可以看出與x軸交點(diǎn)的橫坐標(biāo)是-1、2;方程的兩個根是-1、2,我們發(fā)現(xiàn)方程的兩個解正好是圖像與x軸交點(diǎn)的橫坐標(biāo)。
生乙:我們經(jīng)過討論,認(rèn)為如果方程 (a0)有實(shí)數(shù)根,那么它的根等于二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)。
師:說的很好;
教師總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根。
師:我們知道方程的兩個解正好是二次函數(shù)圖像與x軸的兩個交點(diǎn)的橫坐標(biāo),那么二次函數(shù)圖像與x軸的交點(diǎn)問題可以轉(zhuǎn)化為一元二次方程的根的問題,我們共同研究下面問題。
[學(xué)法]:通過實(shí)例,體會二次函數(shù)與一元二次方程的關(guān)系,解一元二次方程實(shí)質(zhì)上就是求二次函數(shù)為0的自變量x的取值,反映在圖像上就是求拋物線與x軸交點(diǎn)的橫坐標(biāo)。
問題:已知二次函數(shù)y= 。
(1)觀察這個函數(shù)的圖像(圖34-9),一元二次方程 =0的兩個根分別在哪兩個整數(shù)之間?
(2)①由在0至1范圍內(nèi)的x值所對應(yīng)的y值(見下表),你能說出一元二次方程 =0精確到十分位的正根嗎?
x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1
②由在0.6至0.7范圍內(nèi)的x值所對應(yīng)的y值(見下表),你能說出一元二次方程 =0精確到百分位的正根嗎?
x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70
y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190
(3)請仿照上面的方法,求出一元二次方程 =0的另一個精確到十分位的根。
(4)請利用一元二次方程的求根公式解方程 =0,并檢驗(yàn)上面求出的近似解。
第一問很簡單,可以請一名同學(xué)來回答這個問題。
生:一個根在(-2,-1)之間,另一個在(0,1)之間;根據(jù)上面我們得出的結(jié)論。
師:回答的很正確;我們知道圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程的根,所以我們可以通過觀看圖象就能說出方程的兩個根。現(xiàn)在我們共同解答第(2)問。
教師分析:我們知道方程的一個根在(0,1)之間,那么我們觀看(0,1)這個區(qū)間的圖像,y值是隨著x值的增大而不斷增大的,y值也是從負(fù)數(shù)過渡到正數(shù),而當(dāng)y=0時所對應(yīng)的x值就是方程的根?,F(xiàn)在我們要求的是方程的近似解,那么同學(xué)們想一想,答案是什么呢?
生:通過列表可以看出,在(0.6,0.7)范圍內(nèi),y值有-0.04至0.19,如果方程精確到十分位的正根,x應(yīng)該是0.6。
類似的,我們得出方程精確到百分位的正根是0.62。
對于第三問,教師可以讓學(xué)生自己動手解答,教師在下面巡視,觀察其中發(fā)現(xiàn)的問題。
最后師生共同利用求根公式,驗(yàn)證求出的近似解。
教師總結(jié):我們發(fā)現(xiàn),當(dāng)二次函數(shù) (a0)的圖像與x軸有交點(diǎn)時,根據(jù)圖像與x軸的交點(diǎn),就可以確定一元二次方程 的根在哪兩個連續(xù)整數(shù)之間。為了得到更精確的近似解,對在這兩個連續(xù)整數(shù)之間的x的值進(jìn)行細(xì)分,并求出相應(yīng)得y值,列出表格,這樣就可以得到一元二次方程 所要求的精確度的近似解。
Ⅲ.練習(xí)
已知一個矩形的長比寬多3m,面積為6 。求這個矩形的長(精確到十分位)。
板書設(shè)計(jì):
二次函數(shù)的應(yīng)用(1)
一、導(dǎo)入 總結(jié):
二、新課講授 三、練習(xí)
第二課時:
師:在我們的實(shí)際生活中你還遇到過哪些運(yùn)用二次函數(shù)的實(shí)例?
生:老師,我見過好多。如周長固定時長方形的面積與它的長之間的關(guān)系:圓的面積與它的直徑之間的關(guān)系等。
師:好,看這樣一個問題你能否解決:
活動1:如圖34-10,張伯伯準(zhǔn)備利用現(xiàn)有的一面墻和40m長的籬笆,把墻外的空地圍成四個相連且面積相等的矩形養(yǎng)兔場。
回答下面的問題:
1.設(shè)每個小矩形一邊的長為xm,試用x表示小矩形的另一邊的長。
2.設(shè)四個小矩形的總面積為y ,請寫出用x表示y的函數(shù)表達(dá)式。
3.你能利用公式求出所得函數(shù)的圖像的頂點(diǎn)坐標(biāo),并說出y的最大值嗎?
4.你能畫出這個函數(shù)的圖像,并借助圖像說出y的最大值嗎?
學(xué)生思考,并小組討論。
解:已知周長為40m,一邊長為xm,看圖知,另一邊長為 m。
由面積公式得 y= (x )
化簡得 y=
代入頂點(diǎn)坐標(biāo)公式,得頂點(diǎn)坐標(biāo)x=4,y=5。y的最大值為5。
畫函數(shù)圖像:
通過圖像,我們知道y的最大值為5。
師:通過上面這個例題,我們能總結(jié)出幾種求y的最值得方法呢?
生:兩種;一種是畫函數(shù)圖像,觀察最高(低)點(diǎn),可以得到函數(shù)的最值;另外一種可以利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算最值。
師:這位同學(xué)回答的很好,看來同學(xué)們是都理解了,也知道如何求函數(shù)的最值。
總結(jié):由此可以看出,在利用二次函數(shù)的圖像和性質(zhì)解決實(shí)際問題時,常常需要根據(jù)條件建立二次函數(shù)的表達(dá)式,在求最大(或最小)值時,可以采取如下的方法:
(1)畫出函數(shù)的圖像,觀察圖像的最高(或最低)點(diǎn),就可以得到函數(shù)的最大(或最小)值。
(2)依照二次函數(shù)的性質(zhì),判斷該二次函數(shù)的開口方向,進(jìn)而確定它有最大值還是最小值;再利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算出函數(shù)的最大(或最小)值。
師:現(xiàn)在利用我們前面所學(xué)的知識,解決實(shí)際問題。
活動2:如圖34-11,已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,
(1)AC=______;
(2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)表達(dá)式為S=_____.
(3)總面積S有最大值還是最小值?這個最大值或最小值是多少?
(4)總面積S取最大值或最小值時,點(diǎn)C在AB的什么位置?
教師講解:二次函數(shù) 進(jìn)行配方為y= ,當(dāng)a0時,拋物線開口向上,此時當(dāng)x= 時, ;當(dāng)a0時,拋物線開口向下,此時當(dāng)x= 時, 。對于本題來說,自變量x的最值范圍受實(shí)際條件的制約,應(yīng)為02。此時y相應(yīng)的就有最大值和最小值了。通過畫出圖像,可以清楚地看到y(tǒng)的最大值和最小值以及此時x的取值情況。在作圖像時一定要準(zhǔn)確認(rèn)真,同時還要考慮到x的取值范圍。
解答過程(板書)
解:(1)當(dāng)BC=x時,AC=2-x(02)。
(2)S△CDE= ,S△BFG= ,
因此,S= + =2 -4x+4=2 +2,
畫出函數(shù)S= +2(02)的圖像,如圖34-4-3。
(3)由圖像可知:當(dāng)x=1時, ;當(dāng)x=0或x=2時, 。
(4)當(dāng)x=1時,C點(diǎn)恰好在AB的中點(diǎn)上。
當(dāng)x=0時,C點(diǎn)恰好在B處。
當(dāng)x=2時,C點(diǎn)恰好在A處。
[教法]:在利用函數(shù)求極值問題,一定要考慮本題的實(shí)際意義,弄明白自變量的取值范圍。在畫圖像時,在自變量允許取得范圍內(nèi)畫。
練習(xí):
如圖,正方形ABCD的邊長為4,P是邊BC上一點(diǎn),QPAP,并且交DC與點(diǎn)Q。
(1)Rt△ABP與Rt△PCQ相似嗎?為什么?
(2)當(dāng)點(diǎn)P在什么位置時,Rt△ADQ的面積最小?最小面積是多少?
小結(jié):利用二次函數(shù)的增減性,結(jié)合自變量的取值范圍,則可求某些實(shí)際問題中的極值,求極值時可把 配方為y= 的形式。
板書設(shè)計(jì):
二次函數(shù)的應(yīng)用(2)
活動1: 總結(jié)方法:
活動2: 練習(xí):
小結(jié):
第三課時:
我們這部分學(xué)習(xí)的是二次函數(shù)的應(yīng)用,在解決實(shí)際問題時,常常需要把二次函數(shù)問題轉(zhuǎn)化為方程的問題。
師:在日常生活中,有哪些量之間的關(guān)系是二次函數(shù)關(guān)系?大家觀看下面的圖片。
(幻燈片顯示交通事故、緊急剎車)
師:你知道兩輛車在行駛時為什么要保持一定的距離嗎?
學(xué)生思考,討論。
師:汽車在行駛中,由于慣性作用,剎車后還要向前滑行一段距離才能停住,這段距離叫做剎車距離。剎車距離是分析、處理道路交通事故的一個重要原因。
請看下面一個道路交通事故案例:
甲、乙兩車在限速為40km/h的濕滑彎道上相向而行,待望見對方。同時剎車時已經(jīng)晚了,兩車還是相撞了。事后經(jīng)現(xiàn)場勘查,測得甲車的剎車距離是12m,乙車的剎車距離超過10m,但小于12m。根據(jù)有關(guān)資料,在這樣的濕滑路面上,甲車的剎車距離S甲(m)與車速x(km/h)之間的關(guān)系為S甲=0.1x+0.01x2,乙車的剎車距離S乙(m)與車速x(km/h)之間的關(guān)系為S乙= 。
教師提問:1.你知道甲車剎車前的行駛速度嗎?甲車是否違章超速?
2.你知道乙車剎車前的行駛速度在什么范圍內(nèi)嗎?乙車是否違章超速?
學(xué)生思考!教師引導(dǎo)。
對于二次函數(shù)S甲=0.1x+0.01x2:
(1)當(dāng)S甲=12時,我們得到一元二次方程0.1x+0.01x2=12。請談?wù)勥@個一元二次方程這個一元二次方程的實(shí)際意義。
(2)當(dāng)S甲=11時,不經(jīng)過計(jì)算,你能說明兩車相撞的主要責(zé)任者是誰嗎?
(3)由乙車的剎車距離比甲車的剎車距離短,就一定能說明事故責(zé)任者是甲車嗎?為什么?
生甲:我們能知道甲車剎車前的行駛速度,知道甲車的剎車距離,又知道剎車距離與車速的關(guān)系式,所以車速很容易求出,求得x=30km,小于限速40km/h,故甲車沒有違章超速。
生乙:同樣,知道乙車剎車前的行駛速度,知道乙車的剎車距離的取值范圍,又知道剎車距離與車速的關(guān)系式,求得x在40km/h與48km/h(不包含40km/h)之間??梢娨臆囘`章超速了。
同學(xué)們,從這個事例當(dāng)中我們可以體會到,如果二次函數(shù)y= (a0)的某一函數(shù)值y=M。就可利用一元二次方程 =M,確定它所對應(yīng)得x值,這樣,就把二次函數(shù)與一元二次方程緊密地聯(lián)系起來了。
下面看下面的這道例題:
當(dāng)路況良好時,在干燥的路面上,汽車的剎車距離s與車速v之間的關(guān)系如下表所示:
v/(km/h) 40 60 80 100 120
s/m 2 4.2 7.2 11 15.6
(1)在平面直角坐標(biāo)系中描出每對(v,s)所對應(yīng)的點(diǎn),并用光滑的曲線順次連結(jié)各點(diǎn)。
(2)利用圖像驗(yàn)證剎車距離s(m)與車速v(km/h)是否有如下關(guān)系:
(3)求當(dāng)s=9m時的車速v。
學(xué)生思考,親自動手,提高學(xué)生自主學(xué)習(xí)的能力。
教師提問,學(xué)生回答正確答案,教師再進(jìn)行講解。
課上練習(xí):
某產(chǎn)品的成本是20元/件,在試銷階段,當(dāng)產(chǎn)品的售價為x元/件時,日銷量為(200-x)件。
(1)寫出用售價x(元/件)表示每日的銷售利潤y(元)的表達(dá)式。
(2)當(dāng)日銷量利潤是1500元時,產(chǎn)品的售價是多少?日銷量是多少件?
(3)當(dāng)售價定為多少時,日銷量利潤最大?最大日銷量利潤是多少?
課堂小結(jié):本節(jié)課主要是利用函數(shù)求極值的問題,解決此類問題時,一定要考慮到本題的實(shí)際意義,弄明白自變量的取值范圍。在畫圖像時,在自變量允許取的范圍內(nèi)畫。
板書設(shè)計(jì):
二次函數(shù)的應(yīng)用(3)
一、案例 二、例題
分析: 練習(xí):
總結(jié):
數(shù)學(xué)網(wǎng)
二次函數(shù)教案 篇11
【基礎(chǔ)過關(guān)】
1、用一根長10 的鐵絲圍成一個矩形,設(shè)其中的一邊長為 ,矩形的面積為 ,則 與 的函數(shù)關(guān)系式為 .
2、張大爺要圍成一個矩形花圃.花圃的一邊利用足夠長的墻,另三邊用總長為32米的籬笆恰好圍成.圍成的花圃是如圖所示的矩形ABCD.設(shè)AB邊的長為x米.矩形ABCD的面積為S平方米.求S與x之間的函數(shù)關(guān)系
3、小敏在某次投籃中,球的運(yùn)動路線是拋物線 的
一部分(如圖),若命中籃圈中心,則他與籃底的距離 是( )
4、小明的父親在相距2米的兩棵樹間拴了一根繩子,給小明做了一個簡易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,則繩子的最低點(diǎn)距地面的距離為 米.
5、某商場以每臺2500元進(jìn)口一批彩電,如果每臺售價定為2700元,可賣出400臺,以100元為一個價格單位,若每臺提高一個單位價格,則會少賣出50臺。
⑴若設(shè)每臺的定價為 (元)賣出這批彩電獲得的利潤為 (元),試寫出 與 的函數(shù)關(guān)系式;
⑵當(dāng)定價為多少元時可獲得最大利潤?最大利潤是多少?
6、王強(qiáng)在一次高爾夫球的練習(xí)中,在某處擊球,其飛行路線滿足拋物線 ,
其中 (m)是球的飛行高度, (m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)請寫出拋物線的開口方向、頂點(diǎn)坐標(biāo)、對稱軸.(2)請求出球飛行的最大水平距離.
(3)若王強(qiáng)再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進(jìn)洞,則球飛行路線應(yīng)滿足怎樣的拋物線,求出其解析式.
比例線段
1.相似形:在數(shù)學(xué)上,具有相同形狀的圖形稱為相似形
2.比例線段:在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段
3. 比例的性質(zhì)
(1)基本性質(zhì): , a∶b=b∶c b2=ac
(2)比例中項(xiàng):若 的比例中項(xiàng).
比例尺 = (做題之前注意先統(tǒng)一單位)
以上就是初三數(shù)學(xué)寒假作業(yè)之求二次函數(shù)的應(yīng)用的全部內(nèi)容,希望你做完作業(yè)后可以對書本知識有新的體會,愿您學(xué)習(xí)愉快。