初三是學(xué)習(xí)的重要階段,認(rèn)真做好+教案準(zhǔn)備,為學(xué)生們帶來更多的知識和成長吧!下面是由出國留學(xué)網(wǎng)小編為大家整理的“2021初三數(shù)學(xué)教案范本”,僅供參考,歡迎大家閱讀。
2021初三數(shù)學(xué)教案范本(一)
教學(xué)目標(biāo)
1.使學(xué)生初步掌握一元一次方程解簡單應(yīng)用題的方法和步驟;并會列出一元一次方程解簡單的應(yīng)用題;
2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。
教學(xué)重點和難點
一元一次方程解簡單的應(yīng)用題的方法和步驟。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實際問題的有關(guān)知識,那么,一個實際問題能否應(yīng)用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數(shù)為3。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4。
解之,得x=3。
答:某數(shù)為3。
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運用一元一次方程解應(yīng)用題的目的之一。
我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關(guān)系。因此對于任何一個應(yīng)用題中提供的條件,應(yīng)首先從中找出一個相等關(guān)系,然后再將這個相等關(guān)系表示成方程。
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關(guān)系和把這個相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟
例2某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)
3.若設(shè)原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
上述分析過程可列表如下:
解:設(shè)原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42500,
所以x=50000。
答:原來有50000千克面粉。
此時,讓學(xué)生討論:本題的相等關(guān)系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應(yīng)指出:(1)這兩種相等關(guān)系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質(zhì)是一樣的,可以任意選擇其中的一個相等關(guān)系來列方程;
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿。
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個合理未知數(shù);
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系。(這是關(guān)鍵一步);
(3)根據(jù)相等關(guān)系,正確列出方程。即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個條件重復(fù)利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案。這里要求的檢驗應(yīng)是,檢驗所求出的解既能使方程成立,又能使應(yīng)用題有意義。
例3(投影)初一2班第一小組同學(xué)去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學(xué),若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學(xué)生,共摘了多少個蘋果?(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥。解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤。并嚴(yán)格規(guī)范書寫格式)
解:設(shè)第一小組有x個學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5。
其蘋果數(shù)為3×5+9=24。
答:第一小組有5名同學(xué),共摘蘋果24個。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
(設(shè)第一小組共摘了x個蘋果,則依題意,得)
三、課堂練習(xí)
1.買4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習(xí)本每本多少元?
2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
四、師生共同小結(jié)
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2.列一元一次方程解應(yīng)用題的方法和步驟是什么?
3.在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗書寫答案。其中第三步是關(guān)鍵;
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
五、作業(yè)
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產(chǎn)電視機2050臺,這比前年10月產(chǎn)量的2倍還多150臺。這家工廠前年10月生產(chǎn)電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉。求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎?wù)撸坏泉劽咳?00元,二等獎每人50元。求得到一等獎與二等獎的人數(shù)。
2021初三數(shù)學(xué)教案范本(二)
一、教學(xué)目標(biāo)
1.了解推理、證明的格式,理解判定定理的證法。
2.掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證。
3.通過第二個判定定理的推導(dǎo),培養(yǎng)學(xué)生分析問題、進行推理的能力。
4.使學(xué)生了解知識來源于實踐,又服務(wù)于實踐,只有學(xué)好文化知識,才有解決實際問題的本領(lǐng),從而對學(xué)生進行學(xué)習(xí)目的的教育。
二、學(xué)法引導(dǎo)
1.教師教法:啟發(fā)式引導(dǎo)發(fā)現(xiàn)法。
2.學(xué)生學(xué)法:積極參與、主動發(fā)現(xiàn)、發(fā)展思維。
三、重點?難點及解決辦法
(一)重點
判定定理的推導(dǎo)和例題的解答。
(二)難點
使用符號語言進行推理。
(三)解決辦法
1.通過教師正確引導(dǎo),學(xué)生積極思維,發(fā)現(xiàn)定理,解決重點。
2.通過教師指導(dǎo),學(xué)生自行完成推理過程,解決難點及疑點。
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
三角板、投影儀、自制膠片。
六、師生互動活動設(shè)計
1.通過設(shè)計練習(xí),復(fù)習(xí)基礎(chǔ),創(chuàng)造情境,引入新課。
2.通過教師指導(dǎo),學(xué)生探索新知,練習(xí)鞏固,完成新授。
3.通過學(xué)生自己總結(jié)完成小結(jié)。
七、教學(xué)步驟
(一)明確目標(biāo)
掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養(yǎng)學(xué)生的邏輯思維能力。
(二)整體感知
以情境創(chuàng)設(shè),設(shè)計懸念,引出課題,以引導(dǎo)學(xué)生的思維,發(fā)現(xiàn)新知,以變式訓(xùn)練鞏固新知。
(三)教學(xué)過程
創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:上節(jié)課我們學(xué)習(xí)了平行線的判定公理和一種判定方法,根據(jù)所學(xué)看下面的問題(出示投影)。
學(xué)生活動:學(xué)生口答第1、2題。
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學(xué)生活動:由第l、2題,學(xué)生思考分析,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行。
教師將第3題圖形畫在黑板上。
學(xué)生活動:學(xué)生口答理由,同角的補角相等。
師:要求學(xué)生寫出符號推理過程,并板書。
【教法說明】本節(jié)課是前一節(jié)課的繼續(xù),是在前一節(jié)課的基礎(chǔ)上進行學(xué)習(xí)的,所以通過第1、2兩題復(fù)習(xí)上節(jié)課所學(xué)平行線判定的兩個方法,使學(xué)生明確,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行。第3題是為推導(dǎo)本節(jié)到定定理做鋪墊,即如果同旁內(nèi)角互補,則可以推出同位角相等,也可以推出內(nèi)錯角相等,為定理的推理論證,分散了難點。
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關(guān)系角?
學(xué)生活動:同分內(nèi)角。
師:它們有什么關(guān)系。
學(xué)生活動:互補。
師:這個問題就是知道同分內(nèi)角互補了,那么兩條直線是不是平行的呢?這就是這節(jié)課我們要研究的問題。
2021初三數(shù)學(xué)教案范本(三)
一、教學(xué)目標(biāo)
1、理解二元一次方程及二元一次方程的解的概念;
2、學(xué)會求出某二元一次方程的幾個解和檢驗?zāi)硨?shù)值是否為二元一次方程的解;
3、學(xué)會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4、在解決問題的'過程中,滲透類比的思想方法,并滲透德育教育。
二、教學(xué)重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
三、教學(xué)方法與教學(xué)手段
通過與一元一次方程的比較,加強學(xué)生的類比的思想方法;通過“合作學(xué)習(xí)”,使學(xué)生認(rèn)識數(shù)學(xué)是根據(jù)實際的需要而產(chǎn)生發(fā)展的觀點。
四、教學(xué)過程
1、情景導(dǎo)入:
新聞鏈接:x70歲以上老人可領(lǐng)取生活補助。
得到方程:80a+150b=902880、
2、新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程。
做一做:
(1)根據(jù)題意列出方程:
①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設(shè)蘋果的單價x元/kg,梨的單價y元/kg;
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設(shè)轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:
(2)課本P80練習(xí)2、判定哪些式子是二元一次方程方程。
合作學(xué)習(xí):
活動背景愛心滿人間——記求是中學(xué)“學(xué)雷鋒、關(guān)愛老人”志愿者活動。
問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數(shù)上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學(xué)生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對未知數(shù)的值叫做二元一次方程的一個解。
并提出注意二元一次方程解的書寫方法。
3、合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對值小于10的整數(shù))的值,女同學(xué)馬上給出對應(yīng)的x的值;接下來男女同學(xué)互換、(比一比哪位同學(xué)反應(yīng)快)請算的最快最準(zhǔn)確的同學(xué)講他的計算方法、提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?
出示例題:已知二元一次方程x+2y=8。
(1)用關(guān)于y的代數(shù)式表示x;
(2)用關(guān)于x的代數(shù)式表示y;
(3)求當(dāng)x=2,0,—3時,對應(yīng)的y的值,并寫出方程x+2y=8的三個解。
(當(dāng)用含x的一次式來表示y后,再請同學(xué)做游戲,讓同學(xué)體會一下計算的速度是否要快)
4、課堂練習(xí):
(1)已知:5xm—2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x—y=3中,方程可變形為y=當(dāng)x=2時,y=;
5、你能解決嗎?
小紅到郵局給遠在農(nóng)村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。
6、課堂小結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
7、布置作業(yè)。

