高一下冊數(shù)學重要知識點大全總結

字號:


    學習數(shù)學這門課程的時候需要經(jīng)常進行總結,能夠幫助自己更好地掌握知識。下面是由出國留學網(wǎng)編輯為大家整理的“高一下冊數(shù)學重要知識點大全總結”,僅供參考,歡迎大家閱讀本文。
    高一數(shù)學下冊知識點總結1
    1、棱柱
    棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
    棱柱的性質
    (1)側棱都相等,側面是平行四邊形;
    (2)兩個底面與平行于底面的截面是全等的多邊形;
    (3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形。
    2、棱錐
    棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。
    棱錐的性質:
    (1)側棱交于一點。側面都是三角形;
    (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方。
    3、正棱錐
    正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質:
    (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (3)多個特殊的直角三角形。
    a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
    高一數(shù)學下冊知識點總結2
    圓的方程定義:
    圓的標準方程(x-a)2+(y-b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
    直線和圓的位置關系:
    1.直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關系。
    ①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。
    方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
    ①dR,直線和圓相離。
    2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
    3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
    切線的性質
    ⑴圓心到切線的距離等于圓的半徑;
    ⑵過切點的半徑垂直于切線;
    ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;
    ⑷經(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;
    當一條直線滿足
    (1)過圓心;
    (2)過切點;
    (3)垂直于切線。
           三個性質中的兩個時,第三個性質也滿足。
    切線的判定定理
    經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。
    切線長定理
    從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
    高一數(shù)學下冊知識點總結3
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);
    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。
    總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);
    如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
    在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
    在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
    而只有a為正數(shù),0才進入函數(shù)的值域。
    由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。
    (1)所有的圖形都通過(1,1)這點。
    (2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。
    (3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。
    (4)當a小于0時,a越小,圖形傾斜程度越大。
    (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。
    (6)顯然冪函數(shù)無界。
    拓展閱讀:高一數(shù)學學習方法技巧
    1、課后及時回憶
    如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習,可以一個人單獨回憶,也可以幾個人在一起互相啟發(fā),補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節(jié),循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
    2、定期重復鞏固
    即使是復習過的內容仍須定期鞏固,但是復習的次數(shù)應隨時間的增長而逐步減小,間隔也可以逐漸拉長??梢援斕祆柟绦轮R,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統(tǒng)的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節(jié)進行知識歸納總結,必須把相關知識串聯(lián)在一起,形成知識網(wǎng)絡,達到對知識和方法的整體把握。
    3、科學合理安排
    復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優(yōu)于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數(shù)與間隔時間,并非間隔時間越長越好,而要適合自己的復習規(guī)律。