什么是tan公式 tan的所有公式有哪些

字號:


    大家都是數學是一個非常有趣的一門課程,但是學習起來也是有一定的難度,就難三角函數來說吧,今天就讓出國留學網來詳細的講解一下關于tan公式,想知道什么是tan公式?那就進來看看吧。
    tan公式是什么
    tan的公式是三角函數的正切公式,在Rt△ABC中,∠C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊b,正切函數就是tanB=b/a,即tanB=AC/BC。
    三角函數是數學中屬于初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但并不完全?,F代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
    正切函數是三角函數中的一種,為奇函數,無單調減區(qū)間。由正切函數衍生出正切定理,即在平面三角形中,正切定理說明任意兩條邊的和除以第一條邊減第二條邊的差所得的商等于這兩條邊的對角的和的一半的正切除以第一條邊對角減第二條邊對角的差的一半的正切所得的商。法蘭西斯·韋達曾在他對三角法研究的第一本著作《應用于三角形的數學法則》中提出正切定理。
    tan的所有公式有哪些
    半角公式
    tan^2(α/2)=(1-cosα)/(1+cosα);
    tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα;
    倍角公式
    tan2α=(2tanα)/(1-tanα^2);
    降冪公式
    tan^2(α)=(1-cos(2α))/(1+cos(2α));
    常用公式
    tanα=2tan(α/2)/[1-tan^2(α/2)];
    兩角和與差公式
    tan(α+β)=(tanα+tanβ)/(1-tanαtanβ);
    tan(α-β)=(tanα-tanβ)/(1+tanαtanβ);
    和差化積公式
    tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ);
    tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ);
    同角三叫函數關系公式
    倒數關系公式
    ①tanαcotα=1;
    ②sinαcscα=1;
    ③cosαsecα=1;
    商數關系公式
    tanα=sinα/cosα;
    cotα=cosα/sinα;
    平方關系公式
    ①sin2α+cos2α=1;
    ②1+tan2α=sec2α;
    ③1+cot2α=csc2α;
    以上就是出國留學網給大家分享了關于tan公式的相關基本知識,看完后,大家對于tan公式也是有了初步的認識,想要學習好三角函數?那就要掌握大量的公式。這樣學習就來就游刃有余。