想了解高一數(shù)學知識,學習鞏固數(shù)學的小伙伴,趕緊過來瞧一瞧。下面由出國留學網(wǎng)小編為你精心準備了“高一數(shù)學必修一知識點梳理”,本文僅供參考,持續(xù)關注本站將可以持續(xù)獲取更多的知識點!
高一數(shù)學必修一知識點梳理
1.函數(shù)的奇偶性。
(1)若f(x)是偶函數(shù),那么f(x)=f(-x)。
(2)若f(x)是奇函數(shù),0在其定義域內,則f(0)=0(可用于求參數(shù))。
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性。
(5)奇函數(shù)在對稱的單調區(qū)間內有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內有相反的單調性。
2.復合函數(shù)的有關問題。
(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調性由“同增異減”判定。
3.函數(shù)圖像(或方程曲線的對稱性)。
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上。
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱。
4.函數(shù)的周期性。
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù)。
(2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù)。
(3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù)。
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù)。
5.判斷對應是否為映射時,抓住兩點。
(1)A中元素必須都有象且唯一。
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。
6.能熟練地用定義證明函數(shù)的單調性,求反函數(shù),判斷函數(shù)的奇偶性。
7.對于反函數(shù),應掌握以下一些結論。
(1)定義域上的單調函數(shù)必有反函數(shù)。
(2)奇函數(shù)的反函數(shù)也是奇函數(shù)。
(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù)。
(4)周期函數(shù)不存在反函數(shù)。
(5)互為反函數(shù)的兩個函數(shù)具有相同的單調性。
(6)y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。
8.處理二次函數(shù)的問題勿忘數(shù)形結合。
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系。
9.依據(jù)單調性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題。
10.恒成立問題的處理方法。
(1)分離參數(shù)法。
(2)轉化為一元二次方程的根的分布列不等式(組)求解。
拓展閱讀:學習數(shù)學的方法
1.樹立學好高中數(shù)學的信心。
進入高中就必須樹立正確的學習目標和遠大的理想。激勵自己積極思考,勇于進取,培養(yǎng)學習數(shù)學的興趣,樹立學好數(shù)學的信心。
2.先看筆記后做作業(yè)。
有的高中學生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
3.做題之后加強反思。
學生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網(wǎng)絡系統(tǒng)。
4.主動復習總結提高。
進行章節(jié)總結是非常重要的。初中時是教師替學生做總結,做得細致,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且是講到哪,考到哪,不留復習時間,也沒有明確指出做總結的時間。
5.積累資料隨時整理。
要注意積累復習資料。把課堂筆記,練習,單元測試,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內容。這樣,復習資料才能越讀越精,一目了然。
6.跳出永無止境的題海。
省下時間,把精力花在研究精題上。最大限度地利用兩大類精題:一類是涵蓋了多項考點的母題,一類是同一題型中自己頻率較高的錯題。
7.總結數(shù)學規(guī)律。
數(shù)學并不難,其實就是按規(guī)律做題而已。道理很簡單,因為出題的人就是按規(guī)律出題的。所以說只要掌握了規(guī)律,就不用怕了,關鍵就在于找規(guī)律。同一類型的題目,這次錯了,總結出規(guī)律來下次就會做了。規(guī)律越來越多,就像有更多的鑰匙,面對各種各樣的鎖,也就不怕了。別人給你總結好了,你要再總結一次,這樣,它才能成為你的,我們的數(shù)學就建立在以前數(shù)學家總結的規(guī)律上。

